首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   7篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   9篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  1995年   1篇
  1986年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
41.
In this trial we tested a new planting technique for willows used in environmental applications such as green structures in urban settings. Three commercial willow clones were planted in spring 2008 at different periods as non-dormant woody rods. Comparing the main growth parameters at the end of the season, we found that planting date may affect plant establishment depending on the clone. Based on our results, the use of non-dormant willow material collected and planted in spring is possible in our environment with several different clones. Best results were obtained with Salix viminalis (Sv 5027), which can be planted with a delay of about one month without showing any significant decrease in biomass production or survival rate.  相似文献   
42.
Ferulic acid (FA) is a biologically active compound used as an additive in the food industry, and possesses a wide range of therapeutic effects for treating different health problems. The interaction between FA and bovine xanthine oxidase (XOD) has been investigated by means of fluorescence spectroscopy methods. The numbers of binding sites and the binding constants were estimated at various temperatures and the results indicated the existence of one specific FA binding site of XOD. Detailed information on the interaction between molecules gathered after performing in silico molecular docking indicated the accommodation of the FA molecule in a XOD binding pocket, in close vicinity to the active site residues. The formation of the XOD–FA complex causes the quenching of protein fluorescence. The process followed a static mechanism at lower temperatures, and a dynamic mechanism at higher temperatures. The thermodynamic parameters calculated on the basis of different temperatures revealed that the association between FA and XOD is a spontaneous process driven by enthalpy and dominated by hydrogen bonding and van der Waals interaction. The results of synchronous fluorescence and 3D fluorescence spectra showed that the conformation of protein was altered in the presence of FA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
43.
Epicardial white adipose tissue (eWAT) is in close contact with coronary vessels and therefore could alter coronary homeostasis. Adrenomedullin (AM) is a potent vasodilatator and antioxidative peptide which has been shown to play a cytoprotective role in experimental models of acute myocardial infarction. We studied, using immunohistochemistry and qRT-PCR, the expression of AM and its receptors calcitonin receptor-like receptor (CRLR), and receptor activity-modifying protein (RAMP)2 and -3 in paired biopsies of subcutaneous WAT (sWAT) and eWAT obtained from patients with coronary artery disease (CAD) or without CAD (NCAD). In eWAT obtained from NCAD or CAD patients, immunoreactivity for AM, CRLR, and RAMP2 and -3 was detected in blood vessel walls and isolated stromal cells close to adipocytes. Some of the AM positive stromal cells colocalized CD68 immunoreactivity. eWAT from CAD patients showed increased AM immunoreactivity and AM gene expression. CRLR mRNA levels were comparable in sWAT of both groups and decreased by 40-50% in eWAT, irrespectively of the coronary status. RAMP2 mRNA concentrations did not change while RAMP3 mRNA levels increased in sWAT from CAD patients. There was a positive linear relationship between eWAT 11beta-hydroxysteroid dehydrogenase type 1 mRNA (11beta-HSD-1, the enzyme that converts inactive to active glucocorticoids) and AM mRNA. In conclusion, we demonstrate that AM and its receptors are expressed in eWAT. Our data suggest that eWAT AM, which could originate from macrophages, is related to 11beta-HSD-1 expression. AM synthesis, which is increased in eWAT during chronic CAD in humans, can play a cardioprotective role.  相似文献   
44.
Over the past decade, antimicrobial resistance has emerged as a major public health crisis. Glycopeptide antibiotics such as vancomycin and teicoplanin are clinically important for the treatment of Gram-positive bacterial infections. StaL is a 3'-phosphoadenosine 5'-phosphosulfate-dependent sulfotransferase capable of sulfating the cross-linked heptapeptide substrate both in vivo and in vitro, yielding the product A47934, a unique teicoplanin-class glycopeptide antibiotic. The sulfonation reaction catalyzed by StaL constitutes the final step in A47934 biosynthesis. Here we report the crystal structure of StaL and its complex with the cofactor product 3'-phosphoadenosine 5'-phosphate. This is only the second prokaryotic sulfotransferase to be structurally characterized. StaL belongs to the large sulfotransferase family and shows higher similarity to cytosolic sulfotransferases (ST) than to the bacterial ST (Stf0). StaL has a novel dimerization motif, different from any other STs that have been structurally characterized. We have also applied molecular modeling to investigate the binding mode of the unique substrate, desulfo-A47934. Based on the structural analysis and modeling results, a series of residues was mutated and kinetically characterized. In addition to the conserved residues (Lys(12), His(67), and Ser(98)), molecular modeling, fluorescence quenching experiments, and mutagenesis studies identified several other residues essential for substrate binding and/or activity, including Trp(34), His(43), Phe(77), Trp(132), and Glu(205).  相似文献   
45.

Background

New animal models of chronic pulmonary hypertension in mice are needed. The injection of monocrotaline is an established model of pulmonary hypertension in rats. The aim of this study was to establish a murine model of pulmonary hypertension by injection of the active metabolite, monocrotaline pyrrole.

Methods

Survival studies, computed tomographic scanning, histology, bronchoalveolar lavage were performed, and arterial blood gases and hemodynamics were measured in animals which received an intravenous injection of different doses of monocrotaline pyrrole.

Results

Monocrotaline pyrrole induced pulmonary hypertension in Sprague Dawley rats. When injected into mice, monocrotaline pyrrole induced dose-dependant mortality in C57Bl6/N and BALB/c mice (dose range 6–15 mg/kg bodyweight). At a dose of 10 mg/kg bodyweight, mice developed a typical early-phase acute lung injury, characterized by lung edema, neutrophil influx, hypoxemia and reduced lung compliance. In the late phase, monocrotaline pyrrole injection resulted in limited lung fibrosis and no obvious pulmonary hypertension.

Conclusion

Monocrotaline and monocrotaline pyrrole pneumotoxicity substantially differs between the animal species.  相似文献   
46.
The following Schiff bases were employed as ligands in synthesizing copper(II) and zinc(II) complexes: N-[(2-pyridyl)-methyl]-salicylimine (Hsalampy), N-[2-(N,N-dimethyl-amino)-ethyl]-salicylimine (Hsaldmen), and N-[(2-pyridyl)-methyl]-3-methoxy-salicylimine (Hvalampy). The first two ligands were obtained by reacting salicylaldehyde with 2-aminomethyl-pyridyne and N,N-dimethylethylene diamine, respectively, while the third one results from the condensation of 3-methoxysalicylaldehyde with 2-aminomethyl-pyridine. Four new coordination compounds were synthesized and structurally characterized: [Cu(salampy)(H2O)(ClO4)] 1, [Cu2(salampy)2(H2trim)2] 2 (H2trim? = the monoanion of the trimescic acid), [Cu4(valampy)4](ClO4)4 · 2CH3CN 3, and [Zn3(saldmen)3(OH)](ClO4)2 · 0.25H2O 4. The crystal structure of 1 consists of supramolecular dimers resulted from hydrogen bond interactions established between mononuclear [Cu(salampy)(H2O)(ClO4)] complexes. Compound 2 is a binuclear complex with the copper ions connected by two monoatomic carboxylato bridges arising from two molecules of monodeprotonated trimesic acid. The crystal structure of 3 consists of tetranuclear cations with a heterocubane {Cu4O4} core, and perchlorate ions. Compound 4 is a trinuclear complex with a defective heterocubane structure. The magnetic properties of complexes 13 have been investigated. Compound 4 exhibits solid-state photoluminescence at room temperature.  相似文献   
47.
Lindner HA  Alary A  Wilke M  Sulea T 《Biochemistry》2008,47(14):4266-4275
The aminoacylase-1/metallopeptidase 20 (Acy1/M20) family features several l-aminoacylases useful in biocatalysis. Mammalian Acy1, in particular, has been applied in racemic resolution and reverse hydrolysis. Despite recent advances in our understanding of the active site architecture and functioning, determinants of Acy1 substrate specificity have remained uncharted. Comparison to bacterial homologues points to a sterically more restricted acyl-binding pocket for Acy1. Here we sought to map characteristics of the acyl-binding pocket of human and porcine Acy1. Toward this end, we determined Michaelis constants for an analogue series of aliphatic N-acyl- l-methionine substrates and translated the values into three-dimensional quantitative structure-activity relationship models employing the minimal topological difference-partial least square method. The QSAR models for the two enzymes suggest overall similar binding pockets in the acetyl-binding portion and indicate a general preference for straight-chain acyl moieties. Embedding of the QSAR map for human Acy1 in the structure of its metal-binding domain associates the side chain of Ile177 with limited acyl chain elongation which was not observed for the porcine enzyme. The topological model further supports roles of Thr347 and Leu372, which are both conserved in the porcine enzyme, in restricting acyl chain branching at the alpha- and beta-positions, respectively. Mutational analyses confirmed our predictions for Thr347 and Leu372. Moreover, the T347S variant of human Acy1 exhibited markedly increased catalytic efficiency against N-benzoylamino acids, demonstrating the potential for engineering of substrate specificity in Acy1. We discuss the more general application of the employed procedure for protein design.  相似文献   
48.
Eukaryotes may influence pollutant degradation processes in groundwater ecosystems by activities such as predation on bacteria and recycling of nutrients. Culture-independent community profiling and phylogenetic analysis of 18S rRNA gene fragments, as well as culturing, were employed to obtain insight into the sediment-associated eukaryotic community composition in an anaerobic sandy aquifer polluted with landfill leachate (Banisveld, The Netherlands). The microeukaryotic community at a depth of 1 to 5 m below the surface along a transect downgradient (21 to 68 m) from the landfill and at a clean reference location was diverse. Fungal sequences dominated most clone libraries. The fungal diversity was high, and most sequences were sequences of yeasts of the Basidiomycota. Sequences of green algae (Chlorophyta) were detected in parts of the aquifer close (<30 m) to the landfill. The bacterium-predating nanoflagellate Heteromita globosa (Cercozoa) was retrieved in enrichments, and its sequences dominated the clone library derived from the polluted aquifer at a depth of 5 m at a location 21 m downgradient from the landfill. The number of culturable eukaryotes ranged from 10(2) to 10(3) cells/g sediment. Culture-independent quantification revealed slightly higher numbers. Groundwater mesofauna was not detected. We concluded that the food chain in this polluted aquifer is short and consists of prokaryotes and fungi as decomposers of organic matter and protists as primary consumers of the prokaryotes.  相似文献   
49.
50.
Flagella of the bacteria Helicobacter pylori and Campylobacter jejuni are important virulence determinants, whose proper assembly and function are dependent upon glycosylation at multiple positions by sialic acid-like sugars, such as 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid (pseudaminic acid (Pse)). The fourth enzymatic step in the pseudaminic acid pathway, the hydrolysis of UDP-2,4-diacetamido-2,4,6-trideoxy-β-l-altropyranose to generate 2,4-diacetamido-2,4,6-trideoxy-l-altropyranose, is performed by the nucleotide sugar hydrolase PseG. To better understand the molecular basis of the PseG catalytic reaction, we have determined the crystal structures of C. jejuni PseG in apo-form and as a complex with its UDP product at 1.8 and 1.85 Å resolution, respectively. In addition, molecular modeling was utilized to provide insight into the structure of the PseG-substrate complex. This modeling identifies a His17-coordinated water molecule as the putative nucleophile and suggests the UDP-sugar substrate adopts a twist-boat conformation upon binding to PseG, enhancing the exposure of the anomeric bond cleaved and favoring inversion at C-1. Furthermore, based on these structures a series of amino acid substitution derivatives were constructed, altering residues within the active site, and each was kinetically characterized to examine its contribution to PseG catalysis. In conjunction with structural comparisons, the almost complete inactivation of the PseG H17F and H17L derivatives suggests that His17 functions as an active site base, thereby activating the nucleophilic water molecule for attack of the anomeric C–O bond of the UDP-sugar. As the PseG structure reveals similarity to those of glycosyltransferase family-28 members, in particular that of Escherichia coli MurG, these findings may also be of relevance for the mechanistic understanding of this important enzyme family.The gastrointestinal pathogens Campylobacter jejuni and Helicobacter pylori have been shown to modify their flagellins with the sialic acid-like sugar 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid or pseudaminic acid (Pse),3 via O-linkage at up to 19 sites per flagellin monomer (1, 2). Not only is this sialic acid-like modification necessary for flagellar assembly and motility (1, 2), it has also been shown to be important for C. jejuni virulence (3). In addition to its role in autoagglutination of bacterial cells, Pse and related derivatives may also influence pathogenesis through bacterial adhesion, invasion, and immune evasion (4, 5), since sialic acids in humans have been shown to mediate a myriad of cell-cell and cell-molecule interactions (6). As flagellin glycosylation in these organisms is required for host colonization and ultimately virulence (3, 7, 8), these novel sugar biosynthetic pathways provide an excellent platform for therapeutic development.The reliance of H. pylori pathogenicity on Pse biosynthesis, in combination with the prevalence of H. pylori resistance to existing antibiotic treatments (9), prompted and led to the complete elucidation of the CMP-pseudaminic acid (CMP-Pse) biosynthetic pathway in both C. jejuni and H. pylori (1015). The CMP-Pse biosynthetic pathway (Fig. 1) is similar to that of CMP-sialic acid, involving condensation of an N-acetylhexosamine intermediate with the three-carbon pyruvate molecule forming a nine-carbon sialic acid-like nonulosonate, although in contrast the CMP-Pse pathway consists of several more steps between the initial building block UDP-GlcNAc and the condensation reaction. PseG, a UDP-sugar hydrolase, produces the final 6-deoxy-N-acetylhexosamine intermediate in the CMP-Pse pathway by removing the nucleotide moiety from UDP-2,4-diacetamido-2,4,6-trideoxy-β-l-altropyranose or UDP-6-deoxy-AltdiNAc (Fig. 1). This sort of single enzymatic function is rare in nature, with the only other similar example being a GDP-mannose/GDP-glucose hydrolase (16), which belongs to the metal-dependent Nudix family of enzymes. In an elegant study, Liu and Tanner (11) demonstrated that PseG catalyzes nucleotide removal by a metal-independent C–O bond cleavage mechanism resulting in inversion of stereochemistry at C-1 of the product 2,4-diacetamido-2,4,6-trideoxy-l-altropyranose or 6-deoxy-AltdiNAc, similar to the catalytic properties of some GT-B glycosyltransferases.Open in a separate windowFIGURE 1.Role of PseG within the CMP-pseudaminic acid biosynthetic pathway of C. jejuni and H. pylori. The biosynthetic step involving PseG is highlighted in blue. The enzymes and biosynthetic intermediates of the CMP-pseudaminic acid pathway are, in the following order, PseB (Cj1293/HP0840), NADP-dependent dehydratase/epimerase; PseC (Cj1294/HP0366), pyridoxal phosphate-dependent aminotransferase; PseH (Cj1313/HP0327), N-acetyltransferase; PseG (Cj1312/HP0326B), NDP-sugar hydrolase; PseI (Cj1317/HP0178), pseudaminic acid synthase; PseF (Cj1311/HP0326A), CMP-pseudaminic acid synthetase; and I, UDP-GlcNAc; II, UDP-2-acetamido-2,6-dideoxy-β-l-arabino-hexos-4-ulose; III, UDP-4-amino-4,6-dideoxy-β-l-AltNAc; IV, UDP-2,4-diacetamido-2,4,6-trideoxy-β-l-altropyranose; V, 2,4-diacetamido-2,4,6-trideoxy-l-altropyranose; VI, pseudaminic acid; and VII, CMP-pseudaminic acid. Here, PEP refers to phosphoenolpyruvate. Pyranose rings are shown as their predominant chair conformation in solution as determined from nuclear Overhauser effects and JH,H coupling constants (13).Together, glycosyltransferases and glycoside hydrolases compose the majority of enzymes in both eukaryotes and prokaryotes that manipulate glycosidic bonds. Glycosyltransferases of the Leloir classification use sugar-nucleotide derivatives as glycosyl donors resulting in transfer to acceptors such as a monosaccharide, oligosaccharide, or polysaccharide. It is therefore plausible that a “glycosyltransferase fold” in PseG has evolved to efficiently utilize water as an acceptor, instead of another carbohydrate, consequently behaving as a hydrolase (11). Based on structure, most glycosyltransferases fall into two groups, GT-A and GT-B, that exhibit different folds, respectively (17). For both families, depending on the particular enzyme, the outcome may result in either inversion or retention of stereochemistry for the donor anomeric carbon (see Fig. 2). In addition, GT-B family enzymes are metal-independent, lacking an important DXD motif present in most GT-A members. Based on the novelty of PseG and its role in H. pylori pathogenicity, we sought a greater structural and mechanistic understanding of this important enzyme.Open in a separate windowFIGURE 2.Functional comparison of enzymes belonging to the GT-B superfamily. A, UDP-sugar hydrolase PseG catalyzes the removal of UDP from UDP-2,4-diacetamido-2,4,6-trideoxy-β-l-Alt or UDP-6-deoxy-AltdiNAc. B, UDP-GlcNAc hydrolyzing 2-epimerase NeuC catalyzes the removal of UDP and the formation of ManNAc from UDP-GlcNAc. C, GlcNAc transferase MurG catalyzes the formation of undecaprenyl-phosphoryl-muramyl-pentapeptide-GlcNAc via formation of a glycosidic linkage between UDP-GlcNAc and undecaprenyl-phosphoryl-muramyl-pentapeptide. R represents the phosphoryl-undecaprenyl moiety, with the pentapeptide having the specific sequence l-Ala-d-γGlu-l-Lys-d-Ala-d-Ala. Both A and C activities result in an initial inversion of stereochemistry at C-1 for the donor substrate. In contrast, the activity for B results in an initial retention of C-1 stereochemistry. Enzymatically altered anomeric bonds are indicated in red.Here we report the crystal structure of PseG alone at 1.8 Å resolution and in complex with UDP, a product of the reaction, at 1.85 Å resolution. Although very few homologs have been identified based on sequence similarity alone, PseG bears the closest structural similarity to MurG, a GT-B family member (18). In addition, computational docking and molecular dynamics simulations were performed to gain insight into the binding mode of the PseG substrate UDP-6-deoxy-AltdiNAc. Based on the crystallographic and modeled structures, several potential active site residues were selected for mutagenesis and kinetic analyses to further characterize the PseG active site. The relevance of these findings to the structurally related MurG family of enzymes is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号