首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2333篇
  免费   207篇
  国内免费   1篇
  2024年   6篇
  2023年   10篇
  2022年   23篇
  2021年   49篇
  2020年   22篇
  2019年   33篇
  2018年   35篇
  2017年   48篇
  2016年   60篇
  2015年   103篇
  2014年   126篇
  2013年   134篇
  2012年   182篇
  2011年   164篇
  2010年   116篇
  2009年   89篇
  2008年   154篇
  2007年   166篇
  2006年   142篇
  2005年   146篇
  2004年   126篇
  2003年   103篇
  2002年   118篇
  2001年   31篇
  2000年   23篇
  1999年   38篇
  1998年   34篇
  1997年   24篇
  1996年   18篇
  1995年   18篇
  1994年   20篇
  1993年   12篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   9篇
  1988年   13篇
  1987年   6篇
  1986年   6篇
  1985年   14篇
  1984年   5篇
  1983年   7篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1978年   4篇
  1977年   9篇
  1975年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有2541条查询结果,搜索用时 675 毫秒
91.

We assessed the potential for microbial interactions influencing a well-documented host–pathogen system. Mycoplasma agassizii is the known etiological agent of upper respiratory tract disease in Mojave desert tortoises (Gopherus agassizii), but disease in wild animals is extremely heterogeneous. For example, a much larger proportion of animals harbor M. agassizii than those that develop disease. With the availability of a new quantitative PCR assay for a microbe that had previously been implicated in disease, Pasteurella testudinis, we tested 389 previously collected samples of nasal microbes from tortoise populations across the Mojave desert. We showed that P. testudinis is a common commensal microbe. However, we did find that its presence was associated with higher levels of M. agassizii among the tortoises positive for this pathogen. The best predictor of P. testudinis prevalence in tortoise populations was average size of tortoises, suggesting that older populations have higher levels of P. testudinis. The prevalence of co-infection in populations was associated with the prevalence of URTD, providing additional evidence for an indirect interaction between the two microbes and inflammatory disease. We showed that URTD, like many chronic, polymicrobial diseases involving mucosal surfaces, shows patterns of a polymicrobial etiology.

  相似文献   
92.
93.
Reduction in body size of organisms following mass extinctions is well‐known and often ascribed to the Lilliput effect. This phenomenon is expressed as a temporary body size reduction within surviving species. Despite its wide usage the term is often loosely applied to any small post‐extinction taxa. Here we assess the size of bivalves of the family Limidae (Rafineque) prior to, and in the aftermath of, the end‐Triassic mass extinction event. Of the species studied only one occurs prior to the extinction event, though is too scarce to test for the Lilliput effect. Instead, newly evolved species originate at small body sizes and undergo a within‐species size increase, most dramatically demonstrated by Plagiostoma giganteum (Sowerby) which, over two million years, increases in size by 179%. This trend is seen in both field and museum collections. We term this within‐species size increase of newly originated species in the aftermath of mass extinction, the Brobdingnag effect, after the giants that were contemporary with the Lilliputians in Swift's Gulliver's Travels. The size increase results from greater longevity and faster growth rates. The cause of the effect is unclear, although it probably relates to improved environmental conditions. Oxygen‐poor conditions in the Early Jurassic are associated with populations of smaller body size caused by elevated juvenile mortality but these are local/regional effects that do not alter the long‐term, size increase. Although temperature‐size relationships exist for many organisms (Temperature‐Size Rule and Bergmann's Rule), the importance of this is unclear here because of a poorly known Early Jurassic temperature record.  相似文献   
94.
95.
96.
97.
The pathogen Mycobacterium tuberculosis (M.tb) resides in human macrophages, wherein it exploits host lipids for survival. However, little is known about the interaction between M.tb and macrophage plasmalogens, a subclass of glycerophospholipids with a vinyl ether bond at the sn-1 position of the glycerol backbone. Lysoplasmalogens, produced from plasmalogens by hydrolysis at the sn-2 carbon by phospholipase A2, are potentially toxic but can be broken down by host lysoplasmalogenase, an integral membrane protein of the YhhN family that hydrolyzes the vinyl ether bond to release a fatty aldehyde and glycerophospho-ethanolamine or glycerophospho-choline. Curiously, M.tb encodes its own YhhN protein (MtbYhhN), despite having no endogenous plasmalogens. To understand the purpose of this protein, the gene for MtbYhhN (Rv1401) was cloned and expressed in Mycobacterium smegmatis (M.smeg). We found the partially purified protein exhibited abundant lysoplasmalogenase activity specific for lysoplasmenylethanolamine or lysoplasmenylcholine (pLPC) (Vmax∼15.5 μmol/min/mg; Km∼83 μM). Based on cell density, we determined that lysoplasmenylethanolamine, pLPC, lysophosphatidylcholine, and lysophosphatidylethanolamine were not toxic to M.smeg cells, but pLPC and LPC were highly toxic to M.smeg spheroplasts, which are cell wall–deficient mycobacterial forms. Importantly, spheroplasts prepared from M.smeg cells overexpressing MtbYhhN were protected from membrane disruption/lysis by pLPC, which was rapidly depleted from the media. Finally, we found that overexpression of full-length MtbYhhN in M.smeg increased its survival within human macrophages by 2.6-fold compared to vector controls. These data support the hypothesis that MtbYhhN protein confers a growth advantage for mycobacteria in macrophages by cleaving toxic host pLPC into potentially energy-producing products.  相似文献   
98.
Aims: Mycoplasma agassizii can cause upper respiratory tract disease in the threatened desert tortoise of the Southwestern United States. Two technical challenges have impeded critical microbiological studies of this microorganism: (i) its small size limits the use of light microscopy for cell counting and (ii) its extremely slow growth in broth and agar cultures impedes colony counting. Our aim was to develop a rapid and sensitive flow cytometric method using a vital fluorescent dye to enumerate viable M. agassizii cells. Methods and Results: Here, we demonstrate that the nonfluorescent molecule 5‐carboxyfluorescein (5‐CF) diacetate acetoxymethyl ester penetrates M. agassizii cell membranes and it is converted in the cytoplasm to the fluorescent molecule 5‐CF by the action of intracellular esterases. Labelled mycoplasma cells can be easily detected by flow cytometry, and cultures with as few as 100 viable mycoplasma cells ml?1 can be labelled and counted in less than 1 h. Experiments using temperature‐induced cell death demonstrated that only viable M. agassizii cells are labelled with this procedure. Conclusions: A rapid and sensitive flow cytometric technique has been developed for enumerating viable M. agassizii cells. Significance and Impact of the Study: This technique should facilitate basic immunological, biochemical and pharmacological studies of this important pathogen which may lead to new diagnostic and therapeutic methods.  相似文献   
99.
While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC.  相似文献   
100.
LeBlanc HN  Tang TT  Wu JS  Orr-Weaver TL 《Chromosoma》1999,108(7):401-411
Faithful segregation of sister chromatids during cell division requires properly regulated cohesion between the sister centromeres. The sister chromatids are attached along their lengths, but particularly tightly in the centromeric regions. Therefore specific cohesion proteins may be needed at the centromere. Here we show that Drosophila MEI-S332 protein localizes to mitotic metaphase centromeres. Both overexpression and mutation of MEI-S332 increase the number of apoptotic cells. In mei-S332 mutants the ratio of metaphase to anaphase figures is lower than wild type, but it is higher if MEI-S332 is overexpressed. In chromosomal squashes centromeric attachments appear weaker in mei-S332 mutants than wild type and tighter when MEI-S332 is overexpressed. These results are consistent with MEI-S332 contributing to centromeric sister-chromatid cohesion in a dose-dependent manner. MEI-S332 is the first member identified of a predicted class of centromeric proteins that maintain centromeric cohesion. Received: 11 December 1998; in revised form: 4 August 1999 / Accepted: 13 August 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号