首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3286篇
  免费   309篇
  国内免费   2篇
  3597篇
  2023年   20篇
  2022年   29篇
  2021年   55篇
  2020年   28篇
  2019年   43篇
  2018年   54篇
  2017年   59篇
  2016年   79篇
  2015年   131篇
  2014年   145篇
  2013年   168篇
  2012年   241篇
  2011年   216篇
  2010年   132篇
  2009年   115篇
  2008年   194篇
  2007年   206篇
  2006年   171篇
  2005年   191篇
  2004年   153篇
  2003年   121篇
  2002年   136篇
  2001年   47篇
  2000年   50篇
  1999年   64篇
  1998年   45篇
  1997年   28篇
  1996年   26篇
  1995年   25篇
  1994年   22篇
  1993年   30篇
  1992年   31篇
  1991年   27篇
  1990年   23篇
  1989年   24篇
  1988年   24篇
  1987年   28篇
  1986年   21篇
  1985年   32篇
  1984年   30篇
  1983年   23篇
  1982年   13篇
  1981年   14篇
  1980年   16篇
  1979年   21篇
  1978年   15篇
  1977年   15篇
  1975年   13篇
  1974年   16篇
  1972年   9篇
排序方式: 共有3597条查询结果,搜索用时 15 毫秒
81.
82.

Background  

The callipyge mutation is located within an imprinted gene cluster on ovine chromosome 18. The callipyge trait exhibits polar overdominant inheritance due to the fact that only heterozygotes inheriting a mutant paternal allele (paternal heterozygotes) have a phenotype of muscle hypertrophy, reduced fat and a more compact skeleton. The mutation is a single A to G transition in an intergenic region that results in the increased expression of several genes within the imprinted cluster without changing their parent-of-origin allele-specific expression.  相似文献   
83.
A hallmark of metastasis is organ specificity; however, little is known about the underlying signaling pathways responsible for the colonization and growth of tumor cells in target organs. Since tyrosine kinase receptor activation is frequently associated with prostate cancer progression, we have investigated the role of a common signaling intermediary, activated Ras, in prostate cancer metastasis. Three effector pathways downstream of Ras, Raf/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase, and Ral guanine nucleotide exchange factors (RalGEFs), were assayed for their ability to promote the metastasis of a tumorigenic, nonmetastatic human prostate cancer cell line, DU145. Oncogenic Ras promoted the metastasis of DU145 to multiple organs, including bone and brain. Activation of the Raf/ERK pathway stimulated metastatic colonization of the brain, while activation of the RalGEF pathway led to bone metastases, the most common organ site for prostate cancer metastasis. In addition, loss of RalA in the metastatic PC3 cell line inhibited bone metastasis but did not affect subcutaneous tumor growth. Loss of Ral appeared to suppress expansive growth of prostate cancer cells in bone, whereas homing and initial colonization were less affected. These data extend our understanding of the functional roles of the Ral pathway and begin to identify signaling pathways relevant for organ-specific metastasis.  相似文献   
84.
Stoichiometry of soil enzyme activity at global scale   总被引:27,自引:0,他引:27  
Extracellular enzymes are the proximate agents of organic matter decomposition and measures of these activities can be used as indicators of microbial nutrient demand. We conducted a global-scale meta-analysis of the seven-most widely measured soil enzyme activities, using data from 40 ecosystems. The activities of beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-N-acetylglucosaminidase and phosphatase g(-1) soil increased with organic matter concentration; leucine aminopeptidase, phenol oxidase and peroxidase activities showed no relationship. All activities were significantly related to soil pH. Specific activities, i.e. activity g(-1) soil organic matter, also varied in relation to soil pH for all enzymes. Relationships with mean annual temperature (MAT) and precipitation (MAP) were generally weak. For hydrolases, ratios of specific C, N and P acquisition activities converged on 1 : 1 : 1 but across ecosystems, the ratio of C : P acquisition was inversely related to MAP and MAT while the ratio of C : N acquisition increased with MAP. Oxidative activities were more variable than hydrolytic activities and increased with soil pH. Our analyses indicate that the enzymatic potential for hydrolyzing the labile components of soil organic matter is tied to substrate availability, soil pH and the stoichiometry of microbial nutrient demand. The enzymatic potential for oxidizing the recalcitrant fractions of soil organic material, which is a proximate control on soil organic matter accumulation, is most strongly related to soil pH. These trends provide insight into the biogeochemical processes that create global patterns in ecological stoichiometry and organic matter storage.  相似文献   
85.
Specific developmental changes in smooth muscle were studied in gizzards obtained from 6-, 8-, 10-, 12-, 14-, 16-, 18-, and 20-day chick embryos and from 1- and 7-day posthatch chicks. Myoblasts were actively replicating in tissue from 6-day embryos. Cytoplasmic dense bodies (CDBs) first appeared at Embryonic Day 8 (E8) and were recognized as patches of increased electron density that consisted of actin filaments (AFs), intermediate filaments (IFs), and cross-connecting filaments (CCFs). Although the assembly of CDBs was not synchronized within a cell, the number, size, and electron density of CDBs increased as age increased. Membrane-associated dense bodies (MADBs) also could be recognized at E8. The number and size of MADBs increased as age increased, especially after E16. Filaments with the diameter of thick filaments first appeared at E12. Smooth muscle cells were able to divide as late as E20. The axial intermediate filament bundle (IFB) could first be identified in 1-day posthatch cells and became larger and more prominent in 7-day posthatch cells. Immunogold labeling of 1- and 7-day posthatch cells with anti-desmin showed that the IFB contained desmin IFs. The developmental events during this 23-day period were classified into seven stages, based primarily on the appearance and the growth of contractile and cytoskeletal elements. These stages are myoblast proliferation, dense body appearance, thick filament appearance, dense body growth, muscle cell replication, IFB appearance, and appearance of adult type cells. Smooth muscle cells in each stage express similar developmental characteristics. The mechanism of assembly of myofilaments and cytoskeletal elements in smooth muscle in vivo indicates that myofilaments (AFs and thick filaments) and filament attachment sites (CDBs and MADBs) are assembled before the axial IFB, a major cytoskeletal element.  相似文献   
86.
The Escherichia coli Tat apparatus is a protein translocation system that serves to export folded proteins across the inner membrane. The integral membrane proteins TatA, TatB and TatC are essential components of this pathway. Substrate proteins are directed to the Tat apparatus by specialized N-terminal signal peptides bearing a consensus twin-arginine sequence motif. Here we have systematically examined the Tat complexes that can be purified from overproducing strains. Our data suggest that the TatA, TatB and TatC proteins are found in at least two major types of high molecular mass complex in detergent solution, one consisting predominantly of TatA but with a small quantity of TatB, and the other based on a TatBC unit but also containing some TatA protein. The latter complex is shown to be capable of binding a Tat signal peptide. Using an alternative purification strategy we show that it is possible to isolate a TatABC complex containing a high molar excess of the TatA component.  相似文献   
87.
88.

Background

Selenium is an essential element with a rich and varied chemistry in living organisms. It plays a variety of important roles ranging from being essential in enzymes that are critical for redox homeostasis to acting as a deterrent for herbivory in hyperaccumulating plants. Despite its importance there are many open questions, especially related to its chemistry in situ within living organisms.

Scope of review

This review discusses X-ray spectroscopy and imaging of selenium in biological samples, with an emphasis on the methods, and in particular the techniques of X-ray absorption spectroscopy (XAS) and X-ray fluorescence imaging (XFI). We discuss the experimental methods and capabilities of XAS and XFI, and review their advantages and their limitations. A perspective on future possibilities and next-generation of experiments is also provided.

Major conclusions

XAS and XFI provide powerful probes of selenium chemistry, together with unique in situ capabilities. The opportunities and capabilities of the next generation of advanced X-ray spectroscopy experiments are particularly exciting.

General significance

XAS and XFI provide versatile tools that are generally applicable to any element with a convenient X-ray absorption edge, suitable for investigating complex systems essentially without pre-treatment.  相似文献   
89.
Monophenol oxidase (MPO) activity in hemocytes collected from Aedes aegypti Liverpool strain and Aedes trivittatus intrathoracically inoculated with saline alone, inoculated with Dirofilaria immitis microfilariae (mff), or from uninoculated mosquitoes was compared using a radiometric tyrosine hydroxylation assay. Hemocyte MPO activity in mff-inoculated (= immune-activated) mosquitoes was significantly increased at 24 hr postinoculation (PI) in A. aegypti and at 6, 12, and 24 hr PI in A. trivittatus as compared with saline-inoculated controls. Baseline and immune-activated levels of hemocyte MPO activity in A. trivittatus were significantly higher compared with those seen in A. aegypti. Baseline hemocyte population levels were similar in both species, but immune activation did not elicit increases in total hemocyte populations in A. trivittatus as has been demonstrated for A. aegypti. Likewise, immune activation by the inoculation of mff did not significantly alter plasma MPO activity in A. trivittatus as compared with uninoculated or saline-inoculated mosquitoes. Plasma MPO activity in A. aegypti, however, appears to constitute a major component of the immune response. The importance of phenol oxidase(s) in the immune response of mosquitoes against mff and the relationship of observed differences in MPO activity to differences in immunological capability between A. aegypti and A. trivittatus are assessed.  相似文献   
90.
ABSTRACT: BACKGROUND: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflict. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. RESULTS: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. CONCLUSIONS: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号