首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5984篇
  免费   683篇
  国内免费   1篇
  2022年   40篇
  2021年   92篇
  2020年   42篇
  2019年   70篇
  2018年   80篇
  2017年   75篇
  2016年   123篇
  2015年   178篇
  2014年   222篇
  2013年   291篇
  2012年   358篇
  2011年   345篇
  2010年   214篇
  2009年   179篇
  2008年   297篇
  2007年   306篇
  2006年   260篇
  2005年   275篇
  2004年   267篇
  2003年   238篇
  2002年   231篇
  2001年   134篇
  2000年   144篇
  1999年   146篇
  1998年   84篇
  1997年   70篇
  1996年   75篇
  1995年   64篇
  1994年   65篇
  1993年   51篇
  1992年   103篇
  1991年   116篇
  1990年   94篇
  1989年   92篇
  1988年   100篇
  1987年   87篇
  1986年   73篇
  1985年   88篇
  1984年   65篇
  1983年   60篇
  1982年   35篇
  1981年   35篇
  1979年   49篇
  1978年   36篇
  1977年   38篇
  1975年   40篇
  1974年   55篇
  1973年   47篇
  1972年   42篇
  1968年   36篇
排序方式: 共有6668条查询结果,搜索用时 812 毫秒
131.
O-Acetylserine sulfhydrylase (OASS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the final step in the biosynthesis of L-cysteine in Salmonella, viz., the conversion of O-acetyl-L-serine (OAS) and sulfide to L-cysteine and acetate. UV-visible spectra of OASS exhibit absorbance maxima at 280 and 412 nm with pH-independent extinction coefficients over the range 5.5-10.8. Addition of OAS to enzyme results in a shift in the absorbance maximum from 412 to 470 nm, indicating the formation of an alpha-aminoacrylate Schiff base intermediate [Cook, P. F., & Wedding, R. T. (1976) J. Biol. Chem. 251, 2023]. The spectrum of the intermediate is also pH independent from 5.5 to 9.2. The observed changes in absorbance at 470 nm at different concentrations of OAS were used to calculate a Kd of 3 microM for OAS at pH 6.9. As the pH decreases, the Kd increases an order of magnitude per pH unit. The 31P NMR signal of the bound PLP has a pH-independent chemical shift of 5.2 ppm in the presence and absence of OAS. These results indicate that the phosphate group is present as the dianion possibly salt-bridged to positively charged groups of the protein. In agreement with this, the resonance at 5.2 ppm has a line width of 20.5 Hz, suggesting that the cofactor is tightly bound to the protein. The sulfhydrylase was also shown to catalyze an OAS deacetylase activity in which OAS is degraded to pyruvate, ammonia, and acetate. The activity was detected by a time-dependent disappearance of the 470-nm absorbance reflecting the alpha-aminoacrylate intermediate. The rate of disappearance of the intermediate was measured at pH values from 7 to 9.5 using equal concentrations of OAS and OASS. The rate constant for disappearance of the intermediate decreases below a pK of 8.1 +/- 0.1, reflecting the deprotonation of the active-site lysine that originally formed the Schiff base with PLP in free enzyme. A possible mechanism for the deacetylase activity is presented where the lysine displaces alpha-aminoacrylate which decomposes to pyruvate and ammonia.  相似文献   
132.
Plasmalogens (1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) are major phospholipids in many tissues and cells, particularly of neural origin. Using cultured C6 glioma cells and subcellular fractions isolated on Percoll gradients we investigated selectivity for esterification of several polyunsaturated fatty acids (PUFA) in the sn-2 position of plasmalogens compared to [1-14C]hexadecanol, representative of de novo synthesis of the ether-linked sn-1 position. In whole cells at a final concentration of 105 microM PUFA, 2-4 nmol plasmalogen/mg protein was labeled in 4 h and 10-14 nmol in 24 h, representing 8-15% and 35-50%, respectively, of initial plasmalogen mass. Incorporation of label from hexadecanol was lower than PUFA incorporation (20:5(n-3) greater than 20:4(n-6) greater than 18:3(n-3) much greater than 18:2(n-6)) suggesting deacylation-reacylation at the sn-2 position. Plasmalogens accounted for 50% of total cell ethanolamine phospholipids and 75% in plasma membrane. Using a novel, improved method for extraction of subcellular fractions containing Percoll, plasma membrane also was enriched in plasmalogen relative to microsomes (107.4 +/- 5.2 vs. 40.0 +/- 2.9 nmol/mg protein). Selectivity for esterification at the sn-2 position of plasmalogens with respect to chain length and unsaturation of the fatty acyl chain was similar in both subcellular fractions and reflected that of whole cells. Labeling of plasma membrane with PUFA and fatty alcohol lagged behind that of microsomes. Chase experiments in cells prelabeled with [1-14C]18:3(n-3) for 2 h showed no significant reduction of label in plasmalogen of any subcellular fraction although accumulation of label in the microsomal fraction was slowed initially. Reduction of plasmalogen label (40-50%) did occur in microsomes and plasma membrane when cells prelabeled for 24 h were switched to chase medium with or without chase fatty acid. Our data suggest that esterification of PUFA to plasmalogen may occur at the endoplasmic reticulum with subsequent translocation to plasma membrane resulting in accumulation of relatively stable pools of plasmalogen that are not readily accessible for deacylation-reacylation exchange with newly appearing PUFA. Alternatively, deacylation-reacylation may occur in a more stable phospholipid pool within the plasma membrane but would involve a slower process than at the endoplasmic reticulum.  相似文献   
133.
p53 is associated with p34cdc2 in transformed cells.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Milner  A Cook    J Mason 《The EMBO journal》1990,9(9):2885-2889
The normal functioning of p53 is thought to involve p53 target proteins. We have previously identified a cellular 35 kd protein associated with p53 and now report evidence identifying this 35 kd protein as p34cdc2, product of the cell cycle control cdc2 gene. The association between p53 and p34cdc2 was detected in SV3T3 and T3T3 cell lines, both expressing the wild-type p53 phenotype, and in 3T3tx cells, expressing 'mutant' p53 phenotype. Binding of the mutant p53 phenotype with p34cdc2 was greatly reduced relative to wild-type. Complexes of p53-p34cdc2 may represent inactivation or activation of either component. The p34cdc2 kinase functions at cell cycle control points and is necessary for entry and passage through mitosis. It also operates in G1 and is involved in the commitment of cells into the proliferative cycle. Since we were unable to detect p53-p34cdc2 complexes in mitotic cells we propose that the interaction between p53 and p34cdc2 may be functional in cell growth control, possibly to promote or to suppress cell proliferation.  相似文献   
134.
An improved method for purifying O-acetylserine sulfhydrylase from Salmonella typhimurium is described as well as a new computer-controlled assay making use of the sulfide ion selective electrode. The purification method uses gradient elution from Q-Sepharose Fast Flow and phenyl-Sepharose columns to give 75 mg (50% yield) of the enzyme starting from 300 g of starting material in 3 days. The sulfide electrode assay makes use of sulfide and calomel electrodes attached to a signal buffer which serves as an impedance match. The output of the signal buffer is linked in parallel to a strip chart recorder and a Keithley Model 575 data acquisition and control system. The system 575 is interfaced to a Packard-Bell AT computer. In addition, two BASIC computer programs have been written to convert potential measured by the electrode to sulfide concentration and to convert the time course data to rates.  相似文献   
135.
We have previously reported that intralobular salivary duct cells contain an amiloride-sensitive Na+ conductance (probably located in the apical membranes). Since the amiloride-sensitive Na+ conductances in other tight epithelia have been reported to be controlled by extracellular (luminal) Na+, we decided to use whole-cell patch clamp techniques to investigate whether the Na+ conductance in salivary duct cells is also regulated by extracellular Na+. Using Na+-free pipette solutions, we observed that the whole-cell Na+ conductance increased when the extracellular Na+ was increased, whereas the whole-cell Na+ permeability, as defined in the Goldman equation, decreased. The dependency of the whole-cell Na+ conductance on extracellular Na+ could be described by the Michaelis-Menten equation with a K m of 47.3 mmol/1 and a maximum conductance (G max) of 2.18 nS. To investigate whether this saturation of the Na+ conductance with increasing extracellular Na+ was due to a reduction in channel activity or to saturation of the single-channel current, we used fluctuation analysis of the noise generated during the onset of blockade of the Na+ current with 200 μmol/l 6-chloro-3,5-diaminopyrazine-2-carboxamide. Using this technique, we estimated the single channel conductance to be 4 pS when the channel was bathed symmetrically in 150 mmol/l Na+ solutions. We found that Na+ channel activity, defined as the open probability multiplied by the number of available channels, did not alter with increasing extracellular Na+. On the other hand, the single-channel current saturated with increasing extracellular Na+ and, consequently, whole-cell Na+ permeability declined. In other words, the decline in Na+ permeability in salivary duct cells with increasing extracellular Na+ concentration is due simply to saturation of the single-channel Na+ conductance rather than to inactivation of channel activity. Received: 27 July 1995/Revised: 7 December 1995  相似文献   
136.
Cultures of Rhizosolenia formosa H. Peragallo were studied to assess whether or not physiological and optical characteristics of this large diatom were consistent with the ability to migrate vertically in the open ocean. Time-course experiments examined changes in chemical composition and buoyancy of R. formosa during nitrate (N)–replete growth, N starvation, and recovery. Cells could maintain unbalanced growth for at least 53 h after depletion of ambient nitrate. Increases in C:N and carbohydrate: protein ratios observed during N starvation reversed within 24 h of reintroduction of nitrate to culture medium. Buoyancy was related to nutrition: Upon N depletion, the percentage of positively buoyant cells decreased to 4% from 11% but reverted to 9% within 12 h of nitrate readdition. Cells took up nitrate in the dark. Nitrogen-specific uptake rates averaged 0.48 d?1; these rates were higher than N-specific growth rates (0. 15 d?1), indicating the potential for luxury consumption of nitrate, which can be stored for later use. Measurements of photosynthesis vs. irradiance, chlorophyll-specific absorption (aph*(λ)), and pigment composition showed that cells may be adapted for growth under a wide range of irradiances. Values of aph*(λ) were lower for N-depleted cells than for N-replete cells, and N-depleted cells had higher ratios of total carotenoids to chlorophyll a. Aggregation of chloroplasts was more pronounced in N-depleted cells. These are possibly photoprotective mechanisms that would be an advantage to N-depleted cells in surface waters. Compounds that absorb in the ultraviolet region were detected in N-replete cells but were absent in N-depleted cultures. Overall, these results have important implications for migrations of Rhizosolenia in nature. Cells may survive fairly long periods in N-depleted surface waters and will continue to take up carbon; then they can resume nitrate uptake and revert to positive buoyancy upon returning to deep, N-rich water. Uncoupled uptake of carbon and nitrogen during migrations of Rhizosolenia is a form of new production that may result in the net removal of carbon from oceanic surface waters.  相似文献   
137.
Abstract: Several studies have reported declines in brain total and free magnesium concentration after a traumatic insult to the CNS. Although the evidence suggests that this magnesium decline is associated with eventual neurologic outcome after trauma, the duration of free magnesium decline and its impact on related bioenergetic variables are relatively unknown. The present study has therefore used phosphorus magnetic resonance spectroscopy to determine the length of time that free magnesium remains suppressed after traumatic brain injury in rats. Immediately after the traumatic event, brain intracellular free magnesium declined to <60% of preinjury values and remained significantly depressed (50 ± 8%; p < 0.001) for 5 days before recovering to preinjury levels by day 8. Cytosolic phosphorylation ratio and mitochondrial oxidative capacity also significantly decreased ( p = 0.008) and increased ( p = 0.002), respectively, after trauma. However, unlike the time of maximum magnesium change, the maximum changes in these bioenergetic variables occurred at 16–24 h after trauma and thereafter remained stable until after the magnesium had recovered. We conclude that free magnesium decline after trauma precedes changes in bioenergetic variables. Furthermore, therapies targeted at reestablishing magnesium homeostasis after trauma may require administration over a 1-week period.  相似文献   
138.
A thick (ca. 40 m) sequence of coastal eolian sediments occurs on a narrow peninsula on the eastern end of the island of Madeira, located in the Eastern Atlantic at 33°N latitude. The sediments consist of black volcanic sands (with or without bioclasts) as well as clay units up to 2 m thick. A series of inceptisols (Eutrochrepts) and one alfisol (a Hapludalf) are developed in these sediments. Land snail shells and secondary carbonates, in the form of well-developed rhizoliths, calcretes, fissure-fills, and soil nodules, are present in abundance. The chronology of the sequence was determined by 14C and U---Th analyses of land snail shells and secondary carbonates and amino acid epimerization analysis of land snail shells. All sediments, including the clay units, are originally of eolian origin, derived from the beach to the south of the deposit, but some have been redeposited by colluviation. Temporal variation in the lithology of the sediments relates to variations in sea-level, with black sands being deposited during lower sea level stands and clays at the lowest. It is suggested that fine marine sediments, exposed during low sea-level stands, may also be the dominant source of silty or clayey units in other coastal eolian deposits in the subtropical Atlantic and Mediterranean.

The sequence spans from 200,000–300,000 years ago up to the 20th century. Sedimentation was discontinuous and often rapid; erosional hiatuses are present. During the Holocene, eolian sands started accumulating at 8200 yr B.P. during a transgressive phase and stopped at 4500 yr B.P. as sea level approached its present height. Colluviation increased dramatically following the first human settlement of the island in the 15th century and continued up to the 20th century, as dated by amino acid epimerization analysis of land snails. Earlier periods of colluviation were identified from the age distribution of land snail shells redeposited in younger colluvium.

Paleoenvironmental reconstruction was based mainly on soil and sediment features (including rhizolith morphology) and land snail faunas but also on stable isotope variations (13C, 18O) in land snails and secondary carbonates, pollen (generally not well preserved), and phytoliths. Most of the portion of the Middle Pleistocene represented in the sequence was characterized by moderately dry conditions, in comparison to the late Pleistocene and Holocene. During the last interglacial, relatively wet conditions occurred, wetter than during the Holocene interglacial. Moderately moist conditions were present during the accumulation of the thick unit dating to ca. 80,000 yr B.P. As sea level fell subsequent to this period, conditions appear to have become drier. Starting ca. 50,000–55,000 yr B.P., conditions were especially wet, but prior to the last glacial maximum, markedly arid conditions ensued. Toward the end of the last glacial, wet conditions returned and produced the best-developed soil preserved in the sequence. Moderately moist conditions occurred during the early to middle Holocene but apparently become slightly drier after 4500 yr B.P. The impact of human settlement can be seen in the loss of woody vegetation and enhanced gullying and colluviation during the last ca. 500 years.  相似文献   

139.
We have characterized an RNP complex that assembles in nuclear extracts on the negative regulator of splicing (NRS) element from Rous sarcoma virus. While no complex was detected by native gel electrophoresis under conditions that supported spliceosome assembly, gel filtration revealed a specific ATP-independent complex that rapidly assembled on NRS RNA. No complexes were formed on non-specific RNA. Unlike the non-specific H complex, factors required for NRS complex assembly are limiting in nuclear extract. The NRS complex was not detected in reactions containing ATP and pre-formed complexes were dissociated in the presence of ATP. In addition, the assembly process was sensitive to high salt but NRS complexes were salt stable once formed. Assembly of the NRS complex appears functionally significant since mutated NRS RNAs that fail to inhibit splicing in vivo are defective for NRS complex assembly in nuclear extract. The probable relationship of the NRS complex to spliceosomal complexes is discussed.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号