首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   9篇
  137篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   11篇
  2014年   8篇
  2013年   8篇
  2012年   8篇
  2011年   7篇
  2010年   7篇
  2009年   2篇
  2008年   4篇
  2007年   11篇
  2006年   6篇
  2005年   10篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   2篇
  1999年   5篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1986年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
51.
ABCA1-deficient mice have low levels of poorly lipidated apolipoprotein E (apoE) and exhibit increased amyloid load. To test whether excess ABCA1 protects from amyloid deposition, we crossed APP/PS1 mice to ABCA1 bacterial artificial chromosome (BAC) transgenic mice. Compared with wild-type animals, the ABCA1 BAC led to a 50% increase in cortical ABCA1 protein and a 15% increase in apoE abundance, demonstrating that this BAC supports modest ABCA1 overexpression in brain. However, this was observed only in animals that do not deposit amyloid. Comparison of ABCA1/APP/PS1 mice with APP/PS1 controls revealed no differences in levels of brain ABCA1 protein, amyloid, Abeta, or apoE, despite clear retention of ABCA1 overexpression in the livers of these animals. To further investigate ABCA1 expression in the amyloid-containing brain, we then compared ABCA1 mRNA and protein levels in young and aged cortex and cerebellum of APP/PS1 and ABCA1/APP/PS1 animals. Compared with APP/PS1 controls, aged ABCA1/APP/PS1 mice exhibited increased ABCA1 mRNA, but not protein, selectively in cortex. Additionally, ABCA1 mRNA levels were not increased before amyloid deposition but were induced only in the presence of extensive Abeta and amyloid levels. These data suggest that an induction of ABCA1 expression may be associated with late-stage Alzheimer's neuropathology.  相似文献   
52.
53.

Background

Epispadias is the mildest phenotype of the human bladder exstrophy–epispadias complex (BEEC), and presents with varying degrees of severity. This urogenital birth defect results from a disturbance in the septation process, during which separate urogenital and anorectal components are formed through division of the cloaca. This process is reported to be influenced by androgen signaling. The human PARM1 gene encodes the prostate androgen-regulated mucin-like protein 1, which is expressed in heart, kidney, and placenta.

Methods

We performed whole mount in situ hybridization analysis of Parm1 expression in mouse embryos between gestational days (GD) 9.5 and 12.5, which are equivalent to human gestational weeks 4–6. Since the spatio-temporal localization of Parm1 corresponded to tissues which are affected in human epispadias, we sequenced PARM1 in 24 affected patients.

Results

We found Parm1 specifically expressed in the region of the developing cloaca, the umbilical cord, bladder anlage, and the urethral component of the genital tubercle. Additionally, Parm1 expression was detected in the muscle progenitor cells of the somites and head mesenchyme. PARM1 gene analysis revealed no alterations in the coding region of any of the investigated patients.

Conclusions

These findings suggest that PARM1 does not play a major role in the development of human epispadias. However, we cannot rule out the possibility that a larger sample size would enable detection of rare mutations in this gene.  相似文献   
54.
Matrix (M) protein mutants of vesicular stomatitis virus (VSV), such as rM51R-M virus, are less virulent than wild-type (wt) VSV strains due to their inability to suppress innate immunity. Studies presented here show that when inoculated intranasally into mice, rM51R-M virus was cleared from nasal mucosa by day 2 postinfection and was attenuated for spread to the central nervous system, in contrast to wt VSV, thus accounting for its reduced virulence. However, it stimulated an antibody response similar to that in mice infected with the wt virus, indicating that it has the ability to induce adaptive immunity in vivo without causing disease. These results support the use of M protein mutants of VSV as vaccine vectors.  相似文献   
55.

Key message

Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D.

Abstract

This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis–leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.
  相似文献   
56.
Zn(2+) is required as either a catalytic or structural component for a large number of enzymes and thus contributes to a variety of important biological processes. We report here that low micromolar concentrations of Zn(2+) inhibited hormone- or forskolin-stimulated cAMP production in N18TG2 neuroblastoma cells. Similarly, low concentrations inhibited hormone- and forskolin-stimulated adenylyl cyclase (AC) activity in membrane preparations and did so primarily by altering the V(max) of the enzyme. Zn(2+) also inhibited recombinant isoforms, indicating that this reflects a direct interaction with the enzyme. The IC(50) for Zn(2+) inhibition was approximately 1-2 microm with a Hill coefficient of 1.33. The dose-response curve for Zn(2+) inhibition was identical for AC1, AC5, and AC6 as well as for the C441R mutant of AC5 whose defect appears to be in one of the catalytic metal binding sites. However, AC2 displayed a distinct dose-response curve. These data in combination with the findings that Zn(2+) inhibition was not competitive with Mg(2+) or Mg(2+)/ATP suggest that the inhibitory Zn(2+) binding site is distinct from the metal binding sites involved in catalysis. The prestimulated enzyme was found to be less susceptible to Zn(2+) inhibition, suggesting that the ability of Zn(2+) to inhibit AC could be significantly influenced by the coincidence timing of the input signals to the enzyme.  相似文献   
57.
This study assessed the impact on starch metabolism in Arabidopsis leaves of simultaneously eliminating multiple soluble starch synthases (SS) from among SS1, SS2, and SS3. Double mutant ss1- ss2- or ss1- ss3- lines were generated using confirmed null mutations. These were compared to the wild type, each single mutant, and ss1- ss2- ss3- triple mutant lines grown in standardized environments. Double mutant plants developed similarly to the wild type, although they accumulated less leaf starch in both short-day and long-day diurnal cycles. Despite the reduced levels in the double mutants, lines containing only SS2 and SS4, or SS3 and SS4, are able to produce substantial amounts of starch granules. In both double mutants the residual starch was structurally modified including higher ratios of amylose:amylopectin, altered glucan chain length distribution within amylopectin, abnormal granule morphology, and altered placement of α(1→6) branch linkages relative to the reducing end of each linear chain. The data demonstrate that SS activity affects not only chain elongation but also the net result of branch placement accomplished by the balanced activities of starch branching enzymes and starch debranching enzymes. SS3 was shown partially to overlap in function with SS1 for the generation of short glucan chains within amylopectin. Compensatory functions that, in some instances, allow continued residual starch production in the absence of specific SS classes were identified, probaby accomplished by the granule bound starch synthase GBSS1.  相似文献   
58.
Male sagebrush crickets (Cyphoderris strepitans) permit femalesto engage in an unusual form of sexual cannibalism during copulation:females feed on males' fleshy hind wings and ingest hemolymphoozing from the wounds they inflict. These wounds are not fatal,and normally only a portion of the hind wings are eaten at anyone mating, so that mated males are not precluded from matingagain. As a result, nonvirgin males have fewer material resources tooffer females than do virgin males, such that females shouldbe selected to preferentially mate with high-investment virginmales. We tested the hypothesis that female mating preferencesfavor males capable of supplying females with the highest materialinvestment. Our results indicate that both female diet and opportunitiesfor sexual cannibalism influence female mating behavior. Femalesmaintained on a low-nutrient diet mounted males significantlysooner than females maintained on a high-nutrient diet, indicatingthat a female's overall nutrient intake may determine her propensityto mate. In addition, females were significantly more reluctantto mount and mate with males whose hind wings had been surgicallyremoved and thus were incapable of providing females with awing meal. Finally, females initially mated to dewinged malesremated with winged males significantly sooner than femalesallowed to feed freely during their initial mating, resultingin cryptic female choice of investing males.  相似文献   
59.
Rambutan is a popular tropical fruit known for its exotic appearance, has long flexible spines on shells, extraordinary aril growth, desirable nutrition, and a favorable taste. The genome of an elite rambutan cultivar Baoyan 7 was assembled into 328 Mb in 16 pseudo-chromosomes. Comparative genomics analysis between rambutan and lychee revealed that rambutan chromosomes 8 and 12 are collinear with lychee chromosome 1, which resulted in a chromosome fission event in rambutan (n = 16) or a fusion event in lychee (n = 15) after their divergence from a common ancestor 15.7 million years ago. Root development genes played a crucial role in spine development, such as endoplasmic reticulum pathway genes, jasmonic acid response genes, vascular bundle development genes, and K+ transport genes. Aril development was regulated by D-class genes (STK and SHP1), plant hormone and phenylpropanoid biosynthesis genes, and sugar metabolism genes. The lower rate of male sterility of hermaphroditic flowers appears to be regulated by MYB24. Population genomic analyses revealed genes in selective sweeps during domestication that are related to fruit morphology and environment stress response. These findings enhance our understanding of spine and aril development and provide genomic resources for rambutan improvement.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号