首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1187篇
  免费   91篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   25篇
  2020年   15篇
  2019年   19篇
  2018年   14篇
  2017年   22篇
  2016年   20篇
  2015年   47篇
  2014年   59篇
  2013年   78篇
  2012年   120篇
  2011年   80篇
  2010年   44篇
  2009年   41篇
  2008年   81篇
  2007年   77篇
  2006年   73篇
  2005年   79篇
  2004年   65篇
  2003年   77篇
  2002年   52篇
  2001年   8篇
  2000年   12篇
  1999年   17篇
  1998年   19篇
  1997年   14篇
  1996年   8篇
  1995年   11篇
  1994年   10篇
  1993年   4篇
  1992年   10篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1977年   4篇
  1976年   2篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1971年   2篇
  1960年   1篇
  1948年   4篇
排序方式: 共有1278条查询结果,搜索用时 15 毫秒
111.
Microbial degradation of the plant cell wall is the primary mechanism by which carbon is utilized in the biosphere. The hydrolysis of xylan, by endo-beta-1,4-xylanases (xylanases), is one of the key reactions in this process. Although amino acid sequence variations are evident in the substrate binding cleft of "family GH10" xylanases (see afmb.cnrs-mrs.fr/CAZY/), their biochemical significance is unclear. The Cellvibrio japonicus GH10 xylanase CjXyn10C is a bi-modular enzyme comprising a GH10 catalytic module and a family 15 carbohydrate-binding module. The three-dimensional structure at 1.85 A, presented here, shows that the sequence joining the two modules is disordered, confirming that linker sequences in modular glycoside hydrolases are highly flexible. CjXyn10C hydrolyzes xylan at a rate similar to other previously described GH10 enzymes but displays very low activity against xylooligosaccharides. The poor activity on short substrates reflects weak binding at the -2 subsite of the enzyme. Comparison of CjXyn10C with other family GH10 enzymes reveals "polymorphisms" in the substrate binding cleft including a glutamate/glycine substitution at the -2 subsite and a tyrosine insertion in the -2/-3 glycone region of the substrate binding cleft, both of which contribute to the unusual properties of the enzyme. The CjXyn10C-substrate complex shows that Tyr-340 stacks against the xylose residue located at the -3 subsite, and the properties of Y340A support the view that this tyrosine plays a pivotal role in substrate binding at this location. The generic importance of using CjXyn10C as a template in predicting the biochemical properties of GH10 xylanases is discussed.  相似文献   
112.
The propionate utilization operons of several bacteria differ from each other in the occurrence of two genes, acnD and prpF, in place of or in addition to the prpD gene encoding an Fe/S-independent 2-methylcitrate dehydratase enzyme. We cloned the acnD and prpF genes from two organisms, Shewanella oneidensis and Vibrio cholerae, and found that, together, the AcnD and PrpF proteins restored the ability of a prpD mutant strain of Salmonella enterica to grow on propionate as a source of carbon and energy. However, neither acnD nor prpF alone was able to substitute for prpD. The AcnD and PrpF proteins were isolated and biochemically analyzed. The AcnD protein required reconstitution of an Fe/S cluster for activity. All detectable AcnD activity was lost after incubation with iron-chelating agents, and no AcnD activity was observed after attempted reconstitution without iron. Nuclear magnetic resonance spectroscopy and in vitro activity assay data showed that AcnD dehydrated 2-methylcitrate and citrate to 2-methyl-cis-aconitate and cis-aconitate, respectively; AcnD also hydrated cis-aconitate. However, 2-methylisocitrate and isocitrate were not substrates for AcnD, indicating that AcnD only catalyzes the first half of the aconitase-like dehydration reactions. No aconitase-like activity was found for PrpF. It is hypothesized that, in vivo, PrpF is an accessory protein required to prevent oxidative damage of the Fe/S center of active AcnD enzyme or that it may be involved in synthesis or repair of the Fe/S cluster present in AcnD.  相似文献   
113.
Sedimentation equilibrium is a powerful tool for the characterization of protein self-association and heterogeneous protein interactions. Frequently, it is applied in a configuration with relatively long solution columns and with equilibrium profiles being acquired sequentially at several rotor speeds. The present study proposes computational tools, implemented in the software SEDPHAT, for the global analysis of equilibrium data at multiple rotor speeds with multiple concentrations and multiple optical detection methods. The detailed global modeling of such equilibrium data can be a nontrivial computational problem. It was shown previously that mass conservation constraints can significantly improve and extend the analysis of heterogeneous protein interactions. Here, a method for using conservation of mass constraints for the macromolecular redistribution is proposed in which the effective loading concentrations are calculated from the sedimentation equilibrium profiles. The approach is similar to that described by Roark (Biophys. Chem. 5 (1976) 185-196), but its utility is extended by determining the bottom position of the solution columns from the macromolecular redistribution. For analyzing heterogeneous associations at multiple protein concentrations, additional constraints that relate the effective loading concentrations of the different components or their molar ratio in the global analysis are introduced. Equilibrium profiles at multiple rotor speeds also permit the algebraic determination of radial-dependent baseline profiles, which can govern interference optical ultracentrifugation data, but usually also occur, to a smaller extent, in absorbance optical data. Finally, the global analysis of equilibrium profiles at multiple rotor speeds with implicit mass conservation and computation of the bottom of the solution column provides an unbiased scale for determining molar mass distributions of noninteracting species. The properties of these tools are studied with theoretical and experimental data sets.  相似文献   
114.
Akt decreases lymphocyte apoptosis and improves survival in sepsis   总被引:4,自引:0,他引:4  
Sepsis induces extensive death of lymphocytes that may contribute to the immunosuppression and mortality of the disorder. The serine/threonine kinase Akt is a key regulator of cell proliferation and death. The purpose of this study was to determine whether overexpression of Akt would prevent lymphocyte apoptosis and improve survival in sepsis. In addition, given the important role of Akt in cell signaling, T cell Th1 and Th2 cytokine production was determined. Mice that overexpress a constitutively active Akt in lymphocytes were made septic, and survival was recorded. Lymphocyte apoptosis and cytokine production were determined at 24 h after surgery. Mice with overexpression of Akt had a marked improvement in survival compared with wild-type littermates, i.e., 94 and 47% survival, respectively, p < 0.01. In wild-type littermates, sepsis caused a marked decrease in IFN-gamma production, while increasing IL-4 production >2-fold. In contrast, T cells from Akt transgenic mice had an elevated production of IFN-gamma at baseline that was maintained during sepsis, while IL-4 had little change. Akt overexpression also decreased sepsis-induced lymphocyte apoptosis via a non-Bcl-2 mechanism. In conclusion, Akt overexpression in lymphocytes prevents sepsis-induced apoptosis, causes a Th1 cytokine propensity, and improves survival. Findings from this study strengthen the concept that a major defect in sepsis is impairment of the adaptive immune system, and suggest that strategies to prevent lymphocyte apoptosis represent a potential important new therapy.  相似文献   
115.
Immune system impairment and increased susceptibility to infection among alcohol abusers is a significant but not well-understood problem. We hypothesized that acute ethanol administration would inhibit leukocyte recruitment and endothelial cell activation during inflammation and infection. Using LPS and carrageenan air pouch models in mice, we found that physiological concentrations of ethanol (1-5 g/kg) significantly blocked leukocyte recruitment (50-90%). Because endothelial cell activation and immune cell-endothelial cell interactions are critical regulators of leukocyte recruitment, we analyzed the effect of acute ethanol exposure on endothelial cell activation in vivo using the localized Shwartzman reaction model. In this model, ethanol markedly suppressed leukocyte accumulation and endothelial cell adhesion molecule expression in a dose-dependent manner. Finally, we examined the direct effects of ethanol on endothelial cell activation and leukocyte-endothelial cell interactions in vitro. Ethanol, at concentrations within the range found in human blood after acute exposure and below the levels that induce cytotoxicity (0.1-0.5%), did not induce endothelial cell activation, but significantly inhibited TNF-mediated endothelial cell activation, as measured by adhesion molecule (E-selectin, ICAM-1, VCAM-1) expression and chemokine (IL-8, MCP-1, RANTES) production and leukocyte adhesion in vitro. Studies exploring the potential mechanism by which ethanol suppresses endothelial cell activation revealed that ethanol blocked NF-kappaB nuclear entry in an IkappaBalpha-dependent manner. These findings support the hypothesis that acute ethanol overexposure may increase the risk of infection and inhibit the host inflammatory response, in part, by blocking endothelial cell activation and subsequent immune cell-endothelial cell interactions required for efficient immune cell recruitment.  相似文献   
116.
117.
This study investigated the feasibility and validity of using non‐invasively collected ice urine samples to measure cortisol concentrations in Weddell seals. Radio‐immunoassays were used to determine urinary cortisol, and spectrophotometric assay was used to determine creatinine concentrations. This allowed for urinary cortisol/creatinine ratios (UCCR) to be compared between pure urine and urine collected from the ice. Urinary cortisol/creatinine ratios values of ice urine proved an effective method of studying cortisol concentrations in Weddell seals as there was no difference between pure urine and ice urine UCCR values. There were no inter‐sexual or age‐related differences in UCCR values in either pure or ice urine. Zoo Biol 0:1–8, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   
118.
Tight junctions (TJs) in endothelial cells act as cell-cell adhesion structures, governing paracellular permeability (PCP). Disruption can lead to leaky vascular bed and potentially to oedema and swelling of tissues, the aetiology of mastalgia. These changes may also cause vascular spread of cancer cells. This study aimed to determine whether the function of TJs in endothelial cells can be strengthened by gamma linolenic acid (GLA), selenium (Se) and iodine (I) in the presence of 17beta-estradiol (17beta-estradiol), which causes leakage of endothelial cells by disruption of TJs in endothelium. GLA, I, and Se individually increased transendothelial resistance. The combination of all three agents also had a significant effect on TER. Addition of GLA/Se/I reduced PCP of the endothelial cells. Treatment with GLA/Se/I reversed the effect of 17beta-estradiol in reducing TER and increasing PCP. Immunofluorescence revealed that after treatment with Se/I/GLA over 24 h there was increasing relocation to endothelial cell-cell junctions of the TJ proteins Claudin-5, Occludin, and ZO-1. Interestingly, this relocation was particularly evident with treatments containing I when probing with Claudin-5 and those containing Se for Occludin. There was a small increase in overall protein levels when examined by Western blotting after treatment with GLA/Se/I when probed with Claudin-5 and Occludin. We report that GLA, I, and Se alone, or in combination are able to strengthen the function of TJs in human endothelial cells, by way of regulating the distribution of Claudin-5, Occludin, and ZO-1. Interestingly, this combination was also able to completely reverse the effect of 17beta-estradiol in these cells.  相似文献   
119.
The dystrophin-associated protein complex (DAPC), which links the cytoskeleton to the extracellular matrix, is essential for muscle cell survival, and is defective in a wide range of muscular dystrophies. The DAPC contains two transmembrane subcomplexes-the dystroglycans and the sarcoglycans. Although several extracellular binding partners have been identified for the dystroglycans, none have been described for the sarcoglycan subcomplex. Here we show that the small leucine-rich repeat (LRR) proteoglycan biglycan binds to alpha- and gamma-sarcoglycan as judged by ligand blot overlay and co-immunoprecipitation assays. Our studies with biglycan-decorin chimeras show that alpha- and gamma-sarcoglycan bind to distinct sites on the polypeptide core of biglycan. Both biglycan proteoglycan as well as biglycan polypeptide lacking glycosaminoglycan (GAG) side chains are components of the dystrophin glycoprotein complex isolated from adult skeletal muscle membranes. Finally, our immunohistochemical and biochemical studies with biglycan null mice show that the expression of alpha- and gamma-sarcoglycan is selectively reduced in muscle from young (P14-P21) animals, while levels in adult muscle (> or = P35) are unchanged. We conclude that biglycan is a ligand for two members of the sarcoglycan complex and regulates their expression at discrete developmental ages.  相似文献   
120.
Twenty juvenile northern elephant seals (Mirounga angustirostris) that died between 1998 and 2004 had ulcers on the tongue, palatine mucosa, and/or tonsils. Histologic examination of the lesions revealed cytoplasmic swelling, nuclear pyknosis, and eosinophilic to amphophilic intranuclear inclusions bodies suggestive of herpesviral infection. Electron microscopic examination and polymerase chain reaction analysis confirmed the presence of a herpesvirus. Subsequent DNA sequencing identified this to be a new gammaherpesvirus that was similar to Porcine lymphotropic virus 2, Alcephaline herpesvirus 1 (malignant catarrhal fever virus from wildebeest), and Chlorocebus rhadinovirus 1 from African green monkeys. Identical herpesviral DNA was also detected in blood and mucosal swabs collected from five healthy elephant seal pups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号