首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   5篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   10篇
  2012年   7篇
  2011年   13篇
  2010年   2篇
  2009年   6篇
  2008年   10篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   12篇
  2002年   9篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1976年   1篇
排序方式: 共有185条查询结果,搜索用时 31 毫秒
121.
The mitotic checkpoint gene CHFR (checkpoint with forkhead-associated (FHA) and RING finger domains) is silenced by promoter hypermethylation or mutated in various human cancers, suggesting that CHFR is an important tumor suppressor. Recent studies have reported that CHFR functions as an E3 ubiquitin ligase, resulting in the degradation of target proteins. To better understand how CHFR suppresses cell cycle progression and tumorigenesis, we sought to identify CHFR-interacting proteins using affinity purification combined with mass spectrometry. Here we show poly(ADP-ribose) polymerase 1 (PARP-1) to be a novel CHFR-interacting protein. In CHFR-expressing cells, mitotic stress induced the autoPARylation of PARP-1, resulting in an enhanced interaction between CHFR and PARP-1 and an increase in the polyubiquitination/degradation of PARP-1. The decrease in PARP-1 protein levels promoted cell cycle arrest at prophase, supporting that the cells expressing CHFR were resistant to microtubule inhibitors. In contrast, in CHFR-silenced cells, polyubiquitination was not induced in response to mitotic stress. Thus, PARP-1 protein levels did not decrease, and cells progressed into mitosis under mitotic stress, suggesting that CHFR-silenced cancer cells were sensitized to microtubule inhibitors. Furthermore, we found that cells from Chfr knockout mice and CHFR-silenced primary gastric cancer tissues expressed higher levels of PARP-1 protein, strongly supporting our data that the interaction between CHFR and PARP-1 plays an important role in cell cycle regulation and cancer therapeutic strategies. On the basis of our studies, we demonstrate a significant advantage for use of combinational chemotherapy with PARP inhibitors for cancer cells resistant to microtubule inhibitors.  相似文献   
122.
A new clock mutant ( rhy-2) was isolated by DNA insertion mutagenesis using a plasmid that contains a region located upstream of the cmd gene in the genome of Neurospora crassa. This mutant is arrhythmic with regard to conidiation in continuous darkness but rhythmic under a light-dark cycle. After plasmid rescue from genomic DNA of the rhy-2 strain, the insertion was localized to the gene white collar-1 ( wc-1). Plasmid DNA was inserted 3' to the sequence encoding the polyglutamine region of the WC-1 gene product, and an mRNA encoding a truncated WC-1 protein must be synthesized under the control of the cmd promoter. The new wc-1 mutant, rhy-2, is still sensitive to light, although only weakly. Since the circadian rhythm of conidiation in continuous darkness is eliminated in the mutant, the polyglutamine region in WC-1 may be essential for both clock function and light-induced carotenogenesis in Neurospora.  相似文献   
123.
The intestine, which is exposed to nutrition and to food-derived antigens and microbes including viruses and bacteria, might be an important site for the immune response. Crucial structural and functional differences exist between the small and large intestine, regional differences even having been demonstrated within the small intestine. Accordingly, intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) might be heterogeneous among the different intestinal regions. The aim of this study has been to describe, as accurately as possible, the numbers and T-cell receptor (TCR) phenotypes of IELs and LPLs present in distinct regions of the murine small intestine under physiological conditions. Using an immunohistological technique to differentiate IELs from LPLs, the differential enumeration of IELs and LPLs in distinct regions of the murine small intestine, based upon their definition originally determined by their location, has been performed for the first time and has demonstrated that (1) there are more IELs than LPLs in the duodenum and jejunum, but more LPLs than IELs in the ileum, (2) in the duodenum and jejunum, TCR IELs account for 70%–75% of the total CD3+ IELs, a much greater percentage than previously reported, (3) the ratio of TCR to TCR IELs is inverted in the ileum, with more than 75% IELs being TCR-positive, (4) the lamina propria forms one functional unit throughout the small intestine in terms of the TCR subset components (TCR:TCR=3:1), and (5) the ileum is entirely different from other regions of the small intestine. To deepen our understanding of the functional significance of the small intestine as an immunologically competent organ, the precise distributions of IELs and LPLs, the ratio of their various subsets, and the strict distinction of IELs and LPLs, as described in this study, is indispensable.This work was in part supported by a Grand-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (07407066, 10470002, and 13670002 to T.I.)  相似文献   
124.
A family of mitogen-activated protein (MAP) kinases comprising the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 MAP kinases are involved in proliferation and apoptosis. However, there are some arguments concerning the role of these kinases in Ag-induced B cell apoptosis. Two of the B lymphoma cell lines (CH31 and WEHI-231) susceptible to anti-IgM-induced apoptosis were used as a model. To address these issues, we examined the kinetics of anti-IgM-induced activation of MAP kinases and established cell lines overexpressing a dominant-negative (dn) mutant form of JNK1 (dnJNK1). Anti-IgM induced a sustained JNK1 activation with a peak at 8 h, with a marginal activation of ERK1/ERK2 in CH31 cells. The sustained JNK1 activation was not a secondary event through a caspase activation. The peak point of the JNK1 activation was just before the onset of a decline in mitochondrial membrane potential, which preceded anti-IgM-induced cell death. Following anti-IgM stimulation, dnJNK1 prevented a decline in mitochondrial membrane potential at 24 h, with a prolonged inhibition up to 72 h in WEHI-231, although it did so only partially during a later time period in CH31. The dnJNK1 cells also demonstrated diminished procaspase-3 activation and a decreased rate of apoptosis upon anti-IgM stimulation, with a concomitant increased arrest in G(1) phase, which could be explained by enhanced levels of cyclin-dependent kinase inhibitor p27(Kip1) protein. Thus, anti-IgM-induced JNK activation might be implicated in cell cycle progression as well as in apoptosis regulation, probably involving p27(Kip1) protein.  相似文献   
125.
To establish the structural basis underlying the activity of a novel series of metal-chelate trypsin inhibitors, the structures of p-amidinosalicylidene-l-alaninato(aqua)copper(II) (1a), m-amidinosalicylidene-l-alaninato(aqua)copper(II) (1b), bis(p-amidinosalicylidene-l-alaninato)iron(III) (2a), and bis(m-amidinosalicylidene-l-alaninato)iron(III) (2b) bound to bovine beta-trypsin were studied by X-ray crystallography. The amidinium group of the inhibitor donates hydrogen bonds to Asp189, Gly219 and Ser190, as seen before in trypsin-benzamidine complexes. The copper(II) ion of 1a is situated away from trypsin's catalytic triad residues, and is octahedrally coordinated by a Schiff base and three water molecules. In contrast, the copper(II) ion of 1b is situated close to the catalytic triad and adopts a square pyramidal coordination geometry. The iron(III) ion of 2a is octahedrally coordinated by two Schiff base ligands and, like the copper(II) ion of 1a, is situated away from the catalytic triad. The p-amidinophenyl ring of a second Schiff base ligand of 2a is directed toward a hydrophobic groove formed by Trp215 and Leu99. Finally, the iron(III) ion of 2b appears to be replaced by magnesium(II), which is octahedrally coordinated by a Schiff base, Gln192 and two water molecules. One of the Schiff base ligands seen in the trypsin-2a complex or in the unbound form of 2b is replaced by water molecules and Gln192. His57 and Ser195 form water-mediated interactions with the magnesium(II) ion of 2b, and Ser195 also forms a hydrogen bond with the phenolic oxygen atom of the Schiff base ligand. These structures reveal a novel mode of interaction between metal-chelate inhibitors and serine proteases, thus providing a structural basis for the development of more potent inhibitors against a variety of trypsin-like enzymes.  相似文献   
126.
Coronary angiogenesis and collateral growth are chronic adaptations to myocardial ischemia, which are aimed at restoring coronary blood flow and salvaging myocardium in an ischemic region. Although we have assumed that myriad numbers of growth factors are involving in this adaptation, details in the underlying mechanisms, i.e., number of angiogenic factors, angiostatic factors, their receptors/signaling cascades, interactions/crosstalk among the signaling pathways and receptors, and the time course of expression/function of a particular factor or pathway during the successful adaptation are still unclear; they are, probably, harmonized like a symphony. Although there is as of yet no consensus about the mechanisms and causal factors for these cononary adaptations to ischemia, recent evidence strongly suggests that a balance between growth factors and growth inhibitors is critical. In this review we introduce vascular endothelial growth factor, angiopoietins, and angiostatin, as factors playing pivotal roles in coronary angiogenesis and collateral growth.  相似文献   
127.
To elucidate the role of intraepithelial lymphocytes (IEL) and enterocytes in the defense mechanism of the small intestine, we designed experiments to stimulate the IEL by anti-CD3, anti-TCR, or anti-TCR monoclonal antibodies (mAbs), and to examine the subsequent changes to the enterocytes. The enterocytes of the duodenum and jejunum, but not of the ileum, showed massive DNA fragmentation 30 min after intraperitoneal injection of anti-CD3 mAb. These responses were also induced by anti-TCR mAb, but not by anti-TCR mAb, and were completely inhibited by cyclosporin A. Nearly half of the enterocytes of the villi in the duodenum and jejunum were exfoliated into the lumen 4 h after the injection of the mAb. Administration of anti-CD3 mAb also induced DNA fragmentation in Fas-deficient MRL/lpr mice, indicating that the Fas-Fas ligand system was not involved in these events. The anti-CD3 mAb treatment also induced massive DNA fragmentation in the intestinal epithelium of the duodenum and jejunum in TNF-receptor-1-deficient mice, whereas TNF- induced only the detachment of intestinal epithelium of wild-type mice, implying the dissociation of two independent factors and/or mechanisms for DNA fragmentation and the subsequent epithelial cell detachment in the murine duodenum and jejunum. The mAb failed to exfoliate the epithelium in TNF-R1-deficient mice. Thus, TCR+ IEL, when treated with anti-CD3 or anti-TCR mAbs, induced rapid DNA fragmentation and subsequent detachment of the duodenal and jejunal epithelia, but not in the ileum (the silent ileum), partly because of the paucity of TCR+ IELs in the ileum.K. Yaguchi and S. Kayaba contributed equally to this workThis work was in part supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (07407066, 10470002, and 13670002 to T.I., and 10770001 to H.S.), and by The Funds for Comprehensive Research on Long Term Chronic Diseases from the Ministry of Health and Welfare of Japan (to T.I.)  相似文献   
128.
Isoproteins of myosin alkali light chain (LC) were co-expressed in cultured chicken cardiomyocytes and fibroblasts and their incorporation levels into myofibrils and stress fibers were compared among members of the LC isoform family. In order to distinguish each isoform from the other, cDNAs of LC isoforms were tagged with different epitopes. Expressed LCs were detected with antibodies to the tags and their distribution was analyzed by confocal microscopy. In cardiomyocytes, the incorporation level of LC into myofibrils was shown to increase in the order from nonmuscle isoform (LC3nm), to slow skeletal muscle isoform (LC1sa), to slow skeletal/ventricular muscle isoform (LC1sb), and to fast skeletal muscle isoforms (LC1f and LC3f). Thus, the hierarchal order of the LC affinity for the cardiac myosin heavy chain (MHC) is identical to that obtained in the rat (Komiyama et al., 1996. J. Cell Sci., 109: 2089-2099), suggesting that this order may be common for taxonomic animal classes. In fibroblasts, the affinity of LC for the nonmuscle MHC in stress fibers was found to increase in the order from LC3nm, to LC1sb, to LC1sa, and to LC1f and LC3f. This order for the nonmuscle MHC is partly different from that for the cardiac MHC. This indicates that the order of the affinity of LC isoproteins for MHC varies depending on the MHC isoform. Further, for both the cardiac and nonmuscle MHCs, the fast skeletal muscle LCs exhibited the highest affinity. This suggests that the fast skeletal muscle LCs may be evolved isoforms possessing the ability to associate tightly with a variety of MHC isoforms.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号