首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   7篇
  38篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2003年   3篇
  2002年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1990年   2篇
  1986年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
11.
Mass-specific metabolic rate, the rate at which organisms consume energy per gram of body weight, is negatively associated with body size in metazoans. As a consequence, small species have higher cellular metabolic rates and are able to process resources at a faster rate than large species. Since mass-specific metabolic rate has been shown to constrain evolution of sperm traits, and most of the metabolic activity of sperm cells relates to ATP production for sperm motility, we hypothesized that mass-specific metabolic rate could influence sperm energetic metabolism at the cellular level if sperm cells maintain the metabolic rate of organisms that generate them. We compared data on sperm straight-line velocity, mass-specific metabolic rate, and sperm ATP content from 40 mammalian species and found that the mass-specific metabolic rate positively influences sperm swimming velocity by (a) an indirect effect of sperm as the result of an increased sperm length, and (b) a direct effect independent of sperm length. In addition, our analyses show that species with higher mass-specific metabolic rate have higher ATP content per sperm and higher concentration of ATP per μm of sperm length, which are positively associated with sperm velocity. In conclusion, our results suggest that species with high mass-specific metabolic rate have been able to evolve both long and fast sperm. Moreover, independently of its effect on the production of larger sperm, the mass-specific metabolic rate is able to influence sperm velocity by increasing sperm ATP content in mammals.  相似文献   
12.
The role of sperm competition in increasing sperm length is a controversial issue, because findings from different taxa seem contradictory. We present a comparative study of 25 species of snakes with different levels of sperm competition to test whether it influences the size and structure of different sperm components. We show that, as levels of sperm competition increase, so does sperm length, and that this elongation is largely explained by increases in midpiece length. In snakes, the midpiece is comparatively large and it contains structures, which in other taxa are present in the rest of the flagellum, suggesting that it may integrate some of its functions. Thus, increases in sperm midpiece size would result in more energy as well as greater propulsion force. Sperm competition also increases the area occupied by the fibrous sheath and outer dense fibers within the sperm midpiece, revealing for the first time an effect upon structural elements within the sperm. Finally, differences in male–male encounter rates between oviparous and viviparous species seem to lead to differences in levels of sperm competition. We conclude that the influence of sperm competition upon different sperm components varies between taxa, because their structure and function is different.  相似文献   
13.
The identification of a family of SINE retroposons dispersed in the genome of oilseed rape Brassica napus has provided the basis for an evolutionary analysis of retroposition in plants. The repetitive elements (called S1Bn) are 170 by long and occupy roughly 500 loci by haploid genome. They present characteristic features of SINE retroposons such as a 3 terminal A-rich region, two conserved polymerase III motifs (box A and B), flanking direct repeats of variable sizes, and a primary and secondary sequence homology to several tRNA species. A consensus sequence was made from the alignment of 34 members of the family. The retroposon population was divided into five subfamilies based on several correlated sets of mutations from the consensus. These precise separations in subfamilies based on diagnostic mutations and the random distribution of mutations observed inside each subfamily are consistent with the master sequence model proposed for the dispersion of mammalian retroposons. An independent analysis of each subfamily provides strong evidence for the coexpression of at least three subfamily master sequences (SMS). In contrast to mammalian retroposition, diagnostic positions are not shared between SMS. We therefore propose that SMS were all derived from a general master sequence (GMS) and independently activated for retroposition after a variable period of random drift. Possible models for plant retroposition are discussed.Abbreviations SMS subfamily master sequence - GMS general master sequence Correspondence to: J.-M. Deragon  相似文献   
14.
Sperm competition often leads to increase in sperm numbers and sperm quality, and its effects on sperm function are now beginning to emerge. Rapid swimming speeds are crucial for mammalian spermatozoa, because they need to overcome physical barriers in the female tract, reach the ovum, and generate force to penetrate its vestments. Faster velocities associate with high sperm competition levels in many taxa and may be due to increases in sperm dimensions, but they may also relate to higher adenosine triphosphate (ATP) content. We examined if variation in sperm ATP levels relates to both sperm competition and sperm swimming speed in rodents. We found that sperm competition associates with variations in sperm ATP content and sperm‐size adjusted ATP concentrations, which suggests proportionally higher ATP content in response to sperm competition. Moreover, both measures were associated with sperm swimming velocities. Our findings thus support the idea that sperm competition may select for higher ATP content leading to faster sperm swimming velocity.  相似文献   
15.
An analysis of Arabidopsis thaliana heterochromatic regions revealed that genomic sequences immediately flanking the major 180 bp satellite are essentially made of middle repetitive sequences and that most of these sequences correspond to defective Athila retroelements. Using YAC and clones, we evaluated the distribution of Athila elements in the Arabidopsis genome and showed that, despite the presence of numerous euchromatic copies, these elements are especially concentrated in or near heterochromatic regions. Sequencing of the various DNA transitions between satellite and Athila repeats provides strong evidence that most of the heterochromatic elements retrotransposed directly into 180 bp satellite clusters.  相似文献   
16.

Background  

The influence of sperm competition upon sperm size has been a controversial issue during the last 20 years which remains unresolved for mammals. The hypothesis that, when ejaculates compete with rival males, an increase in sperm size would make sperm more competitive because it would increase sperm swimming speed, has generated contradictory results from both theoretical and empirical studies. In addition, the debate has extended to which sperm components should increase in size: the midpiece to accommodate more mitochondria and produce more energy to fuel motility, or the principal piece to generate greater propulsion forces.  相似文献   
17.
Post‐copulatory sexual selection, in the form sperm competition, has influenced the evolution of several male reproductive traits. However, theory predicts that sperm competition would lead to trade‐offs between numbers and size of spermatozoa because increased costs per cell would result in a reduction of sperm number if both traits share the same energetic budget. Theoretical models have proposed that, in large animals, increased sperm size would have minimal fitness advantage compared with increased sperm numbers. Thus, sperm numbers would evolve more rapidly than sperm size under sperm competition pressure. We tested in mammals whether sperm competition maximizes sperm numbers and size, and whether there is a trade‐off between these traits. Our results showed that sperm competition maximizes sperm numbers in eutherian and metatherian mammals. There was no evidence of a trade‐off between sperm numbers and sperm size in any of the two mammalian clades as we did not observe any significant relationship between sperm numbers and sperm size once the effect of sperm competition was taken into account. Maximization of both numbers and size in mammals may occur because each trait is crucial at different stages in sperm's life; for example size‐determined sperm velocity is a key determinant of fertilization success. In addition, numbers and size may also be influenced by diverse energetic budgets required at different stages of sperm formation.  相似文献   
18.
Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号