首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   18篇
  103篇
  2022年   4篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   10篇
  1999年   4篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
71.
In an attempt to isolate the superoxide dismutase (SOD) gene from the anaerobic sulfate-reducing bacterium Desulfoarculus baarsii, a DNA fragment was isolated which functionally complemented an Escherichia coli mutant (sodA sodB) deficient in cytoplasmic SODs. This region carries two open reading frames with sequences which are very similar to that of the rbo-rub operon from Desulfovibrio vulgaris. Independent expression of the rbo and rub genes from ptac showed that expression of rbo was responsible for the observed phenotype. rbo overexpression suppressed all deleterious effects of SOD deficiency in E. coli, including inactivation by superoxide of enzymes containing 4Fe-4S clusters and DNA damage produced via the superoxide-enhanced Fenton reaction. Thus, rbo restored to the sodA sodB mutant the ability to grow on minimal medium without the addition of branched amino acids, and growth on gluconate and succinate carbon sources was no longer impaired. The spontaneous mutation rate, which is elevated in SOD-deficient mutants, returned to the wild-type level in the presence of Rbo, which also restored aerobic viability of sodA sodB recA mutants. Rbo from Desulfovibrio vulgaris, but not Desulfovibrio gigas desulforedoxin, which corresponds to the NH2-terminal domain of Rbo, complemented sod mutants. The physiological role of Rbo in sulfate-reducing bacteria is unknown. In E. coli, Rbo may permit the bacterium to avoid superoxide stress by maintaining functional (reduced) superoxide sensitive 4Fe-4S clusters. It would thereby restore enzyme activities and prevent the release of iron that occurs after cluster degradation and presumably leads to DNA damage.  相似文献   
72.
An Escherichia coli double mutant, sodAsodB, that is deficient in both bacterial superoxide dismutases (Mn superoxide dismutase and iron superoxide dismutase) is unable to grow on minimal medium in the presence of oxygen and exhibits increased sensitivity to paraquat and hydrogen peroxide. Expression of the evolutionarily unrelated eukaryotic CuZn superoxide dismutase in the sodAsodB E. coli mutant results in a wild-type phenotype with respect to aerobic growth on minimal medium and in resistance to paraquat and hydrogen peroxide. This supports the hypothesis that superoxide dismutation is the in vivo function of these proteins. Analysis of the growth of sodAsodB cells containing plasmids encoding partially active CuZn superoxide dismutases, produced by in vitro mutagenesis, shows a correlation between cell growth and enzyme activity. Thus, the sodAsodB strain provides a controlled selection for varying levels of superoxide dismutase activity.  相似文献   
73.
Om wild-type Escherichia coli, near-ultraviolet radiation (NUV) was only weakly mutagenic. However, in an allelic mutant strain (sodA sodB) that lacks both Mn- and Fe-superoxide dismutase (SOD) and assumed to have excess superoxide anion (O2), NUV induced a 9-fold increase in mutation above the level that normally occurs in this double mutant. When a sodA sodB double mutant contained a plasmid carrying katG+ HP-I catalase), mutation by NUV was reduced to wild-type (sodA+sodB+) levels. Also, in the sodA sodB xthA triple mutant, which lacks exonuclease III (exoIII) in addition to SOD, the mutations frequency by NUV was reduced to wild-type levels. This synergistic action of NUV and O2 suggested that pre-mutational lesions occur, with exoIII converting these lesions to stable mutants. Exposure to H2O2 induced a 2.8 fold increase in mutations in sodA sodB double mutants, but was reduced to control levels when a plasmid carrying katG+ was introduced. These results suggest that NUV, in addition to its other effects on cells, increases mutations indirectly by increasing the flux of OH. radicals, possibly by generating excess H2O2.  相似文献   
74.
75.
76.
To test a possible specific effect of carbon K-shell ionizations in DNA, survival curves for Chinese hamster V79 cells were measured for X irradiations at energies below and above the carbon K-shell ionization threshold. Specific values of the X-ray energies (250 and 340 eV) were chosen to ensure isoattenuation of the two kinds of radiation within the cell. An enhancement of lethality by a factor of about 2 was found for X rays at 340 eV compared to below the threshold at 250 eV. This may be attributed to the production of highly efficient carbon K-shell ionizations located on DNA. A model of X-ray lethality (Goodhead et al., Radiat. Prot. Dosim. 52, 217-223, 1994) was extended to allow for a possible lethal effect from clusters of reactive species induced by K-shell photoionizations (K-shell clusters). Within this model, the increase in lethality above the carbon K-shell threshold may be explained by a value of 2% for the lethal efficiency of K-shell clusters overlapping the DNA. An extrapolation to the lethal effect of more complex ion-induced K-shell ionizations indicates that K-shell ionization may be a major process in the biological effectiveness of heavy ions.  相似文献   
77.
78.
The nucleotide sequence of the iron superoxide dismutase gene from Escherichia coli K12 has been determined. Analysis of the DNA sequence and mapping of the mRNA start reveal a unique promoter and a putative rho-independent terminator, and suggest that the Fe dismutase gene constitutes a monocistronic operon. The gene encodes a polypeptide product consisting of 192 amino acid residues with a calculated Mr of 21,111. The published N-terminal amino acid sequence of E. coli B Fe dismutase (Steinman, H. M., and Hill, R. L. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 3725-3729), along with the sequences of seven other peptides reported here, was located in the primary structure deduced from the K12 E. coli gene sequence. A new molecular model for iron dismutase from E. coli, based on the DNA sequence and x-ray data for the E. coli B enzyme at 3.1 A resolution, allows detailed comparison of the structure of the iron enzyme with manganese superoxide dismutase from Thermus thermophilus HB8. The structural similarities are more extensive than indicated by earlier studies and are particularly striking in the vicinity of the metal-ligand cluster, which is surrounded by conserved aromatic residues. The combined structural and sequence information now available for a series of Mn and Fe superoxide dismutases identifies variable regions in these otherwise very similar molecules; the principal variable site occurs in a surface region between the two long helices which dominate the N-terminal domain.  相似文献   
79.
80.
The Escherichia coli Fur protein, with its iron(II) cofactor, represses iron assimilation and manganese superoxide dismutase (MnSOD) genes, thus coupling iron metabolism to protection against oxygen toxicity. Iron assimilation is triggered by iron starvation in wild-type cells and is constitutive in fur mutants. We show that iron metabolism deregulation in fur mutants produces an iron overload, leading to oxidative stress and DNA damage including lethal and mutagenic lesions. fur recA mutants were not viable under aerobic conditions and died after a shift from anaerobiosis to aerobiosis. Reduction of the intracellular iron concentration by an iron chelator (ferrozine), by inhibition of ferric iron transport (tonB mutants), or by overexpression of the iron storage ferritin H-like (FTN) protein eliminated oxygen sensitivity. Hydroxyl radical scavengers dimethyl sulfoxide and thiourea also provided protection. Functional recombinational repair was necessary for protection, but SOS induction was not involved. Oxygen-dependent spontaneous mutagenesis was significantly increased in fur mutants. Similarly, SOD deficiency rendered sodA sodB recA mutants nonviable under aerobic conditions. Lethality was suppressed by tonB mutations but not by iron chelation or overexpression of FTN. Thus, superoxide-mediated iron reduction was responsible for oxygen sensitivity. Furthermore, overexpression of SOD partially protected fur recA mutants. We propose that a transient iron overload, which could potentially generate oxidative stress, occurs in wild-type cells on return to normal growth conditions following iron starvation, with the coupling between iron and MnSOD regulation helping the cells cope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号