首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10678篇
  免费   842篇
  国内免费   3篇
  11523篇
  2024年   5篇
  2023年   60篇
  2022年   173篇
  2021年   263篇
  2020年   152篇
  2019年   207篇
  2018年   254篇
  2017年   237篇
  2016年   328篇
  2015年   558篇
  2014年   603篇
  2013年   782篇
  2012年   981篇
  2011年   892篇
  2010年   598篇
  2009年   511篇
  2008年   671篇
  2007年   728篇
  2006年   671篇
  2005年   547篇
  2004年   546篇
  2003年   446篇
  2002年   435篇
  2001年   79篇
  2000年   59篇
  1999年   80篇
  1998年   93篇
  1997年   76篇
  1996年   58篇
  1995年   60篇
  1994年   32篇
  1993年   53篇
  1992年   32篇
  1991年   34篇
  1990年   19篇
  1989年   14篇
  1988年   19篇
  1987年   7篇
  1986年   11篇
  1985年   18篇
  1984年   16篇
  1983年   13篇
  1982年   18篇
  1981年   10篇
  1980年   10篇
  1979年   10篇
  1977年   9篇
  1976年   7篇
  1975年   5篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
221.
Aldehyde dehydrogenases are found in all organisms and play an important role in the metabolic conversion and detoxification of endogenous and exogenous aldehydes. Genomes of many organisms including Escherichia coli and Salmonella typhimurium encode two succinate semialdehyde dehydrogenases with low sequence similarity and different cofactor preference (YneI and GabD). Here, we present the crystal structure and biochemical characterization of the NAD(P)+‐dependent succinate semialdehyde dehydrogenase YneI from S. typhimurium. This enzyme shows high activity and affinity toward succinate semialdehyde and exhibits substrate inhibition at concentrations of SSA higher than 0.1 mM. YneI can use both NAD+ and NADP+ as cofactors, although affinity to NAD+ is 10 times higher. High resolution crystal structures of YneI were solved in a free state (1.85 Å) and in complex with NAD+ (1.90 Å) revealing a two domain protein with the active site located in the interdomain interface. The NAD+ molecule is bound in the long channel with its nicotinamide ring positioned close to the side chain of the catalytic Cys268. Site‐directed mutagenesis demonstrated that this residue, as well as the conserved Trp136, Glu365, and Asp426 are important for activity of YneI, and that the conserved Lys160 contributes to the enzyme preference to NAD+. Our work has provided further insight into the molecular mechanisms of substrate selectivity and activity of succinate semialdehyde dehydrogenases. © 2012 Wiley Periodicals, Inc.  相似文献   
222.
The amyloidoses are diseases associated with nonnative folding of proteins and characterized by the presence of protein amyloid aggregates. The ability of quercetin, resveratrol, caffeic acid, and their equimolar mixtures to affect amyloid aggregation of hen egg white lysozyme in vitro was detected by Thioflavin T fluorescence assay. The anti‐amyloid activities of tested polyphenols were evaluated by the median depolymerization concentrations DC50 and median inhibition concentrations IC50. Single substances are more efficient (by at least one order) in the depolymerization of amyloid aggregates assay than in the inhibition of the amyloid formation with IC50 in 10?4 to 10?5M range. Analyzed mixture samples showed synergic or antagonistic effects in both assays. DC50 values ranged from 10?5 to 10?8M and IC50 from 10?5 to 10?9M, respectively. We observed that certain mixtures of studied polyphenols can synergistically inhibit production of amyloids aggregates and are also effective in depolymerization of the aggregates. Synergic or antagonistic effects of studied mixtures were correlated with protein–small ligand docking studies and AFM results. Differences in these activities could be explained by binding of each polyphenol to a different amino acid sequence within the protein. Our results indicate that synergic/antagonistic anti‐amyloid effects of studied mixtures depend on the selective binding of polyphenols to the known amyloidogenic sequences in the lysozyme chain. Our findings of the effective reduction of amyloid aggregation of lysozyme by polyphenol mixtures in vitro are of the utter physiological relevance considering the bioavailability and low toxicity of tested phenols. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   
223.
Liposomes composed of egg-phosphatidylcholine (EPC) incorporating quercetin (QR) were prepared by the thin-film hydration method (TFHM) and the monophase solution method (MSM). A rapid and slow freeze-drying process was applied for both laboratory and industrial scales. The purpose of this study was to compare the two methods of liposome preparation, and further determine whether the lyophilization process affects the liposome physicochemical characteristics (size, polydispersity index, and ζ-potential) and incorporation of quercetin.  相似文献   
224.
Abstract

We report the first use of exciplex-based split-probes for detection of the wild type and *3 mutant alleles of human cytochrome P450 2C9. A tandem 8-mer split DNA oligonucleotide probe system was designed that allows detection of the complementary target DNA sequence. This exciplex-based fluorescence detector system operates by means of a contiguous hybridization of two oligonucleotide exciplex split-probes to a complementary target nucleic acid target. Each probe oligonucleotide is chemically modified at one of its termini by a potential exciplex-forming partner, each of which is fluorescently silent at the wavelength of detection. Under conditions that ensure correct three-dimensional assembly, the chemical moieties on suitable photoexcitation form an exciplex that fluoresces with a large Stokes shift (in this case 130 nm). Preliminary proof-of-concept studies used two 8-mer probe oligonucleotides, but in order to give better specificity for genomic applications, probe length was extended to give coverage of 24 bases. Eight pairs of tandem 12-mer oligonucleotide probes spanning the 2C9*3 region were designed and tested to find the best set of probes. Target sequences tested were in the form of (i) synthetic oligonucleotides, (ii) embedded in short PCR products (150 bp), or (iii) inserted into plasmid DNA (~ 3 Kbp). The exciplex system was able to differentiate wild type and human cytochrome P450 2C9 *3 SNP (1075 A→C) alleles, based on fluorescence emission spectra and DNA melting curves, indicating promise for future applications in genetic testing and molecular diagnostics.  相似文献   
225.
Termites and their gut microbial symbionts efficiently degrade lignocellulose into fermentable monosaccharides. This study examined three glycosyl hydrolase family 7 (GHF7) cellulases from protist symbionts of the termite Reticulitermes flavipes. We tested the hypotheses that three GHF7 cellulases (GHF7‐3, GHF7‐5, and GHF7‐6) can function synergistically with three host digestive enzymes and a fungal cellulase preparation. Full‐length cDNA sequences of the three GHF7s were assembled and their protist origins confirmed through a combination of quantitative PCR and cellobiohydrolase (CBH) activity assays. Recombinant versions of the three GHF7s were generated using a baculovirus‐insect expression system and their activity toward several model substrates compared with and without metallic cofactors. GHF7‐3 was the most active of the three cellulases; it exhibited a combination of CBH, endoglucanase (EGase), and β‐glucosidase activities that were optimal around pH 7 and 30°C, and enhanced by calcium chloride and zinc sulfate. Lignocellulose saccharification assays were then done using various combinations of the three GHF7s along with a host EGase (Cell‐1), beta‐glucosidase (β‐glu), and laccase (LacA). GHF7‐3 was the only GHF7 to enhance glucose release by Cell‐1 and β‐glu. Finally, GHF7‐3, Cell‐1, and β‐glu were individually tested with a commercial fungal cellulase preparation in lignocellulose saccharification assays, but only β‐glu appreciably enhanced glucose release. Our hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF7‐3. These findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.  相似文献   
226.
Rock cod Patagonotothen ramsayi (Regan, 1913) is one of the most abundant fish of the family Nototheniidae inhabiting the Patagonian Shelf and upper Slope in the southwest Atlantic. Recently, P. ramsayi became an important commercial species around the Falkland Islands with annual catch of 60,000–75,000 t. The present study aimed to reveal previously unknown aspects of reproductive biology of P. ramsayi during the first successful maintenance of adults for more than a year in an aquaculture facility with running seawater. The fish spawned at the end of austral winter. During spawning, males changed their coloration dramatically, occupied artificial shelters on the bottom and showed aggressive territorial behaviour. Egg masses were light-yellow to light-orange irregular spongiform. They were negatively buoyant, but located outside shelters and were ignored by males. Egg diameters varied between 2.1 and 2.3 mm, and the number of eggs per egg mass ranged from 26,800 to 123,400. Embryogenesis lasted 28–32 days. Total lengths of newly hatched larvae ranged from 6.2 to 6.7 mm. The yolk sac feeding period lasted approximately 11 days, during which the larvae showed negative phototaxis. One-month-old larvae attained 8.8–9.0 mm in length. This study confirms that P. ramsayi exhibit the reproductive strategy typical for nototheniid species occupying low-latitude peripheries of their distributional range, characterised by a combination of r-features (small eggs and larvae, high fecundity) and K-features (territorial behaviour and possible nest guarding).  相似文献   
227.
The fine structure of the jaw apparatus was studied by scanning electron microscopy in eight species of Patellogastropoda. The jaw apparatus is an unpaired two-layered dorsolateral structure with anterior and posterior wings attached to the odontophore by muscles. The jaw of Testudinalia tesulata (O.F. Müller, 1776) is a derivative of the cuticle typical for the foregut. The tissue forming the jaw is a specialized foregut epithelium (gnathoepithelium), consisting of a special type of cells called gnathoblasts. The jaw grows in areas of the epithelium characterized by high concentration of electron-dense vesicles, ER and long microvilli that penetrate deep into the jaw plate. This indicates that the gnathoblasts take an active part in jaw growth. In most cases, these areas of the gnathoepithelium are highly folded. The main differences between the species studied are form and thickness of the frontal edge of the jaw. These differences do not correlate with the systematic position of the species studied but likely depend more on the feeding mode. The transmission electron microscopy studies yielded new morphological criteria for comparison between various gastropod species and other members of Trochozoa, in particular, Annelida. The jaws of Annelida are cuticular structures formed on the surface of specialized epithelial cells, often also called gnathoblasts. The jaw of Patellogastropoda can be attributed to the first type of annelid jaw formation characterized by an epithelium with long microvilli and continuous growth.  相似文献   
228.
229.
We studied the growth of the araphid pennate diatom Synedra acus subsp. radians (Kützing) Skabichevskii using a fluorescent dye N 1,N 3-dimethyl-N 1-(7-nitro-2,1,3-benzoxadiazol-4-yl)propane-1,3-diamine (NBD-N2), which stains growing siliceous frustules but does not stain other subcellular organelles. We used a clonal culture of S. acus that was synchronized by silicon starvation. Epifluorescence microscopy was performed in two different ways with cells stained by the addition of silicic acid and the dye. Individual cells immobilized on glass were observed during the first 15–20 min following the replenishment of silicic acid after silicon starvation. Alternatively, we examined cells of a batch culture at time intervals during 36 h after the replenishment of silicic acid using fluorescence and confocal microscopy. The addition of silicic acid and NBD-N2 resulted in the rapid (1–2 min) formation of several dozen green fluorescent submicrometer particles (GFSPs) in the cytoplasm, which was accompanied by the accumulation of fluorescent silica inside silica deposition vesicles (SDVs) along their full length. In 5–15 min, GFSPs disappeared from the cytoplasm. Mature siliceous valves were formed within the SDVs during the subsequent 14–16 h. In the next 8–10 h, GFSPs appeared again in the cytoplasm of daughter cells. The data obtained confirm observations about the two-stage mechanism of silicon assimilation, which includes rapid silicon uptake (surge uptake) followed by slow silica deposition. It is likely that the observed GFSPs are silicon transport vesicles, which were first proposed by Schmid and Schulz in (Protoplasma 100:267–288, 1979).  相似文献   
230.
Phospholipase D (PLD) and its product phosphatidic acid (PA) are incorporated in a complex metabolic network in which the individual PLD isoforms are suggested to regulate specific developmental and stress responses, including plant programmed cell death (PCD). Despite the accumulating knowledge, the mechanisms through which PLD/PA operate during PCD are still poorly understood. In this work, the role of PLDα1 in PCD and the associated caspase-like proteolysis, ethylene and hydrogen peroxide (H2O2) synthesis in tomato suspension cells was studied. Wild-type (WT) and PLDα1-silenced cell lines were exposed to the cell death-inducing chemicals camptothecin (CPT), fumonisin B1 (FB1) and CdSO4. A range of caspase inhibitors effectively suppressed CPT-induced PCD in WT cells, but failed to alleviate cell death in PLDα1-deficient cells. Compared to WT, in CPT-treated PLDα1 mutant cells, reduced cell death and decreased production of H2O2 were observed. Application of ethylene significantly enhanced CPT-induced cell death both in WT and PLDα1 mutants. Treatments with the PA derivative lyso-phosphatidic acid and mastoparan (agonist of PLD/PLC signalling downstream of G proteins) caused severe cell death. Inhibitors, specific to PLD and PLC, remarkably decreased the chemical-induced cell death. Taken together with our previous findings, the results suggest that PLDα1 contributes to caspase-like-dependent cell death possibly communicated through PA, reactive oxygen species and ethylene. The dead cells expressed morphological features of PCD such as protoplast shrinkage and nucleus compaction. The presented findings reveal novel elements of PLD/PA-mediated cell death response and suggest that PLDα1 is an important factor in chemical-induced PCD signal transduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号