首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2179篇
  免费   122篇
  2022年   9篇
  2021年   25篇
  2020年   12篇
  2019年   14篇
  2018年   26篇
  2017年   33篇
  2016年   40篇
  2015年   68篇
  2014年   71篇
  2013年   113篇
  2012年   123篇
  2011年   143篇
  2010年   91篇
  2009年   95篇
  2008年   120篇
  2007年   165篇
  2006年   142篇
  2005年   157篇
  2004年   160篇
  2003年   134篇
  2002年   162篇
  2001年   16篇
  2000年   11篇
  1999年   27篇
  1998年   44篇
  1997年   32篇
  1996年   31篇
  1995年   15篇
  1994年   17篇
  1993年   14篇
  1992年   10篇
  1991年   16篇
  1990年   12篇
  1989年   14篇
  1988年   14篇
  1987年   15篇
  1986年   12篇
  1985年   14篇
  1984年   10篇
  1983年   10篇
  1982年   9篇
  1981年   9篇
  1980年   11篇
  1979年   3篇
  1978年   6篇
  1976年   3篇
  1974年   3篇
  1971年   4篇
  1970年   3篇
  1963年   2篇
排序方式: 共有2301条查询结果,搜索用时 31 毫秒
41.
42.
Summary Chimaeric genes containing the chloramphenicol acetyltransferase (CAT) coding sequence were introduced into protoplasts of suspension-cultured tobacco cells using improved conditions of electroporation (Okada et al. 1986). CAT activity became detectable in the protoplasts within 3 h, was maximal during a period of 18–36 h after electroporation, and then declined gradually. Alpha-amanitin added to the medium abolished the transient expression of the CAT gene. The closed circular form of input DNA was as effective as the linear form for the transient expression. The suspension culture was treated with aphidicolin, and S, G2, M and G1 phases were identified in the highly synchronized cell cycle obtained by releasing the cells from the inhibition of DNA synthesis. When a chimacric CAT gene was introduced into M phase protoplasts prepared from the synchronized culture, the transient expression of the CAT gene was 3–4 times higher than when it was introduced into protoplasts of other cell cycle phases. The frequency of stable transformation with a chimaeric neomycin phosphotransferase II gene was studied using the same system. G-418-resistant transformants were obtained from M phase protoplasts at frequencies 2–8 times those obtained from protoplasts at other cell cycle phases. The results indicate that the absence of the nuclear membrane in mitotic cells favours delivery to the nucleus of exogenous DNA introduced into the cytoplasm.  相似文献   
43.
Because antimicrobial resistance in food-producing animals is a major public health concern, many countries have implemented antimicrobial monitoring systems at a national level. When designing a sampling scheme for antimicrobial resistance monitoring, it is necessary to consider both cost effectiveness and statistical plausibility. In this study, we examined how sampling scheme precision and sensitivity can vary with the number of animals sampled from each farm, while keeping the overall sample size constant to avoid additional sampling costs. Five sampling strategies were investigated. These employed 1, 2, 3, 4 or 6 animal samples per farm, with a total of 12 animals sampled in each strategy. A total of 1,500 Escherichia coli isolates from 300 fattening pigs on 30 farms were tested for resistance against 12 antimicrobials. The performance of each sampling strategy was evaluated by bootstrap resampling from the observational data. In the bootstrapping procedure, farms, animals, and isolates were selected randomly with replacement, and a total of 10,000 replications were conducted. For each antimicrobial, we observed that the standard deviation and 2.5–97.5 percentile interval of resistance prevalence were smallest in the sampling strategy that employed 1 animal per farm. The proportion of bootstrap samples that included at least 1 isolate with resistance was also evaluated as an indicator of the sensitivity of the sampling strategy to previously unidentified antimicrobial resistance. The proportion was greatest with 1 sample per farm and decreased with larger samples per farm. We concluded that when the total number of samples is pre-specified, the most precise and sensitive sampling strategy involves collecting 1 sample per farm.  相似文献   
44.
45.
The rapid and aggressive spread of artemisinin-resistant Plasmodium falciparum carrying the C580Y mutation in the kelch13 gene is a growing threat to malaria elimination in Southeast Asia, but there is no evidence of their spread to other regions. We conducted cross-sectional surveys in 2016 and 2017 at two clinics in Wewak, Papua New Guinea (PNG) where we identified three infections caused by C580Y mutants among 239 genotyped clinical samples. One of these mutants exhibited the highest survival rate (6.8%) among all parasites surveyed in ring-stage survival assays (RSA) for artemisinin. Analyses of kelch13 flanking regions, and comparisons of deep sequencing data from 389 clinical samples from PNG, Indonesian Papua and Western Cambodia, suggested an independent origin of the Wewak C580Y mutation, showing that the mutants possess several distinctive genetic features. Identity by descent (IBD) showed that multiple portions of the mutants’ genomes share a common origin with parasites found in Indonesian Papua, comprising several mutations within genes previously associated with drug resistance, such as mdr1, ferredoxin, atg18 and pnp. These findings suggest that a P. falciparum lineage circulating on the island of New Guinea has gradually acquired a complex ensemble of variants, including kelch13 C580Y, which have affected the parasites’ drug sensitivity. This worrying development reinforces the need for increased surveillance of the evolving parasite populations on the island, to contain the spread of resistance.  相似文献   
46.
47.

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is being rapidly developed for mutagenesis in higher plants. Ideally, foreign DNA introduced by this system is removed in the breeding of edible crops and vegetables. Here, we report an efficient generation of Cas9-free mutants lacking an allergenic gene, Gly m Bd 30K, using biolistic transformation and the CRISPR/Cas9 system. Five transgenic embryo lines were selected on the basis of hygromycin resistance. Cleaved amplified polymorphic sequence analysis detected only two different mutations in e all of the lines. These results indicate that mutations were induced in the target gene immediately after the delivery of the exogenous gene into the embryo cells. Soybean plantlets (T0 plants) were regenerated from two of the transgenic embryo lines. The segregation pattern of the Cas9 gene in the T1 generation, which included Cas9-free plants, revealed that a single copy number of transgene was integrated in both lines. Immunoblot analysis demonstrated that no Gly m Bd 30K protein accumulated in the Cas9-free plants. Gene expression analysis indicated that nonsense mRNA decay might have occurred in mature mutant seeds. Due to the efficient induction of inheritable mutations and the low integrated transgene copy number in the T0 plants, we could remove foreign DNA easily by genetic segregation in the T1 generation. Our results demonstrate that biolistic transformation of soybean embryos is useful for CRISPR/Cas9-mediated site-directed mutagenesis of soybean for human consumption.

  相似文献   
48.
The plasma membranes of archaea are abundant in macrocyclic tetraether lipids that contain a single or double long transmembrane hydrocarbon chains connecting the two glycerol backbones at both ends. In this study, a novel amacrocyclic bisphosphatidylcholine lipid bearing a single membrane-spanning octacosamethylene chain, 1,1’-O-octacosamethylene-2,2′-di-O-tetradecyl-bis-(sn-glycero)-3,3′-diphosphocholine (AC-(di-O-C14PC)2), was synthesized to elucidate effects of the interlayer cross-linkage on membrane properties based on comparison with its corresponding diether phosphatidylcholine, 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DTPC), that forms bilayer membrane. Several physicochemical techniques demonstrated that while AC-(di-O-C14PC)2 monolayer, which adopts a particularly high-ordered structure in the gel phase, shows remarkably high thermotropic transition temperature compared to DTPC bilayer, the fluidity of both phospholipids above the transition temperature is comparable. Nonetheless, the fluorescent dye leakage from inside the AC-(di-O-C14PC)2 vesicles in the fluid phase is highly suppressed. The origin of the membrane properties characteristic of AC-(di-O-C14PC)2 monolayer is discussed in terms of the single long transmembrane hydrophobic linkage and the diffusional motion of the lipid molecules.  相似文献   
49.
Urate is the final metabolite of purine in humans. Renal urate handling is clinically important because under-reabsorption or underexcretion causes hypouricemia or hyperuricemia, respectively. We have identified a urate-anion exchanger, URAT1, localized at the apical side and a voltage-driven urate efflux transporter, URATv1, expressed at the basolateral side of the renal proximal tubules. URAT1 and URATv1 are vital to renal urate reabsorption because the experimental data have illustrated that functional loss of these transporter proteins affords hypouricemia. While mutations affording enhanced function via these transporter proteins on urate handling is unknown, we have constructed kidney-specific transgenic (Tg) mice for URAT1 or URATv1 to investigate this problem. In our study, each transgene was under the control of the mouse URAT1 promoter so that transgene expression was directed to the kidney. Plasma urate concentrations in URAT1 and URATv1 Tg mice were not significantly different from that in wild-type (WT) mice. Urate excretion in URAT1 Tg mice was similar to that in WT mice, while URATv1 Tg mice excreted more urate compared with WT. Our results suggest that hyperfunctioning URATv1 in the kidney can lead to increased urate reabsorption and may contribute to the development of hyperuricemia.  相似文献   
50.
Fractionated radiotherapy (RT) is widely used in cancer treatment, because it preserves normal tissues. However, repopulation of radioresistant tumors during fractionated RT limits the efficacy of RT. We recently demonstrated that a moderate level of long-term fractionated radiation confers acquired radioresistance to tumor cells, which is caused by DNA-PK/AKT/GSK3β-mediated cyclin D1 overexpression. The resulting cyclin D1 overexpression leads to forced progression of the cell cycle to S-phase, concomitant with induction of DNA double-strand breaks (DSBs). In this study, we investigated the molecular mechanisms underlying cyclin D1 overexpression-induced DSBs during DNA replication in acquired radioresistant cells. DNA fiber data demonstrated that replication forks progressed slowly in acquired radioresistant cells compared with corresponding parental cells in HepG2 and HeLa cell lines. Slowly progressing replication forks were also observed in HepG2 and HeLa cells that overexpressed a nondegradable cyclin D1 mutant. We also found that knockdown of Mus81endonuclease, which is responsible for resolving aberrant replication forks, suppressed DSB formation in acquired radioresistant cells. Consequently, Mus81 created DSBs to remove aberrant replication forks in response to replication perturbation triggered by cyclin D1 overexpression. After treating cells with a specific inhibitor for DNA-PK or ATM, apoptosis rates increased in acquired radioresistant cells but not in parental cells by inhibiting the DNA damage response to cyclin D1-mediated DSBs. This suggested that these inhibitors might eradicate acquired radioresistant cells and improve fractionated RT outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号