首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   35篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   8篇
  2015年   9篇
  2014年   8篇
  2013年   19篇
  2012年   19篇
  2011年   26篇
  2010年   18篇
  2009年   11篇
  2008年   17篇
  2007年   19篇
  2006年   13篇
  2005年   14篇
  2004年   18篇
  2003年   15篇
  2002年   18篇
  2001年   13篇
  2000年   13篇
  1999年   11篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   1篇
  1988年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
  1965年   1篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
41.
The expression of iron homeostasis-related genes during rice germination   总被引:1,自引:1,他引:0  
To characterize Fe homeostasis during the early stages of seed germination, a microarray analysis was performed. mRNAs extracted from fully mature seeds or seeds harvested 1–3 days after sowing were hybridized to a rice microarray containing approximately 22,000 cDNA oligo probes. Many Fe deficiency-inducible genes were strongly expressed throughout early seed germination. These results suggest that the demand for Fe is extremely high during germination. Under Fe-deficient conditions, rice produces and secretes a metal-cation chelator called deoxymugineic acid (DMA) to acquire Fe from the soil. In addition, DMA and its intermediate nicotianamine (NA) are thought to be involved in long distance Fe transport in rice. Using promoter-β-glucuronidase (GUS) analysis, we investigated the expression patterns during seed germination of the Fe deficiency-inducible genes OsNAS1, OsNAS2, OsNAS3, OsNAAT1, and OsDMAS1, which encode enzymes that participate in the biosynthesis of DMA, and the transporter genes OsYSL2 and OsIRT1, which are involved in Fe transport. All of these genes were expressed in germinating seeds prior to protrusion of the radicle. These results suggest that DMA and NA are produced and involved in Fe transport during germination. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
42.
We developed a technique for detecting the heat-labile I (LTI) and heat-stable I (STI) genes of enterotoxigenic Escherichia coli (ETEC) using a novel DNA amplification procedure designated Loop-Mediated Isothermal Amplification (LAMP). The detection limit of accelerated LAMP utilizing loop primers was 4 CFU/test for LTI and was 40 CFU/test for STI, which are 10-fold higher than those of conventional PCR assay (detection limit, 40 CFU/test and 400 CFU/test, respectively). No DNA amplification was observed in LT and ST non-producing E. coli or other bacterial strains; thus, high specificity was verified. The specificity of LAMP assay was also confirmed by digestion of LAMP products using restriction enzymes and DNA sequence analysis. In the accelerated LAMP assay, DNA amplification was detected within 35 min, and thus LAMP is superior to conventional PCR in terms of rapidity. It was confirmed that increased concentrations of primers and Bst DNA polymerase could further facilitate the reaction. Furthermore, with the high amplification efficiency of the LAMP assay, amplification can be visually observed by the turbidity caused by magnesium pyrophosphate, a byproduct of the reaction. Detection of LTI and STI in ETEC by LAMP is thus an extremely rapid procedure with high sensitivity and specificity that requires no specialized equipment. This assay is expected to become a valuable tool for rapid diagnosis in ETEC infection.  相似文献   
43.
44.
Shiga toxin 2 (Stx2)‐specific mAb‐producing hybridoma clones were generated from mice. Because mice tend to produce small amounts of B subunit (Stx2B)‐specific antibodies at the polyclonal antibody level after immunization via the parenteral route, mice were immunized intranasally with Stx2 toxoids with a mutant heat‐labile enterotoxin as a mucosal adjuvant; 11 different hybridoma clones were obtained in two trials. Six of them were A subunit (Stx2A)‐specific whereas five were Stx2B‐specific antibody‐producing clones. The in vitro neutralization activity of Stx2B‐specific mAbs against Stx2 was greater than that of Stx2A‐specific mAbs on HeLa229 cells. Furthermore, even at low concentrations two of the Stx2B‐specific mAbs (45 and 75D9) completely inhibited receptor binding and showed in vivo neutralization activity against a fivefold median lethal dose of Stx2 in mice. In western blot analysis, these Stx2B‐specific neutralization antibodies did not react to three different mutant forms of Stx2, each amino acid residue of which was associated with receptor binding. Additionally, the nucleotide sequences of the VH and VL regions of clones 45 and 75D9 were determined. Our Stx2B‐specific mAbs may be new candidates for the development of mouse‐human chimeric Stx2‐neutralizing antibodies which have fewer adverse effects than animal antibodies for enterohemorrhagic Escherichia coli infection.  相似文献   
45.
Type 2 diabetes (T2D) is characterized by decreased insulin sensitivity and higher concentrations of free fatty acids (FFAs) in plasma. Among FFAs, saturated fatty acids (SFAs), such as palmitate, have been suggested to promote inflammatory responses. Although many epidemiological studies have shown a link between periodontitis and T2D, little is known about the clinical significance of SFAs in periodontitis. In this study, we showed that gingival fibroblasts have cell‐surface expression of CD36, which is also known as FAT/fatty acid translocase. Moreover, CD36 expression was increased in gingival fibroblasts of high‐fat diet‐induced T2D model mice, compared with gingival fibroblasts of mice fed a normal diet. DNA microarray analysis revealed that palmitate increased mRNA expression of pro‐inflammatory cytokines and chemokines in human gingival fibroblasts (HGF). Consistent with these results, we confirmed that palmitate‐induced interleukin (IL)‐6, IL‐8, and CXCL1 secretion in HGF, using a cytokine array and ELISA. SFAs, but not an unsaturated fatty acid, oleate, induced IL‐8 production. Docosahexaenoic acid (DHA), which is one of the omega‐3 polyunsaturated fatty acids, significantly suppressed palmitate‐induced IL‐6 and IL‐8 production. Treatment of HGF with a CD36 inhibitor also inhibited palmitate‐induced pro‐inflammatory responses. Finally, we demonstrated that Porphyromonas gingivalis (P.g.) lipopolysaccharide and heat‐killed P.g. augmented palmitate‐induced chemokine secretion in HGF. These results suggest a potential link between SFAs in plasma and the pathogenesis of periodontitis. J. Cell. Physiol. 230: 2981–2989, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
  相似文献   
46.
A new aporocotylid blood fluke is described, based on specimens from the ventricle of the Pacific bluefin tuna, Thunnus orientalis (Temminck et Schlegel), cultured in Wakayama and Nagasaki Prefectures, Japan. The new species is morphologically similar to the members of the genus Cardicola Short, 1953, but shows distinct differences in the body form, location of the testis and the orientation of the ootype. The body of the new species is long and slender, whereas other Cardicola species are small and generally lanceolate. The testis is mostly located posterior to the caeca and anterior to the ovary, occupying 31–45% of body length, in contrast to the known Cardicola species, whose testis is typically intercaecal. The ootype is oriented anteriorly, while in most congeners, it is directed posteriorly or horizontally. Phylogenetic analyses of this aporocotylid, together with Cardicola orientalis Ogawa, Tanaka, Sugihara et Takami, 2010 from the same host, were conducted based on DNA sequences of the ITS2 rDNA and the 28S region of ribosomal RNA. The analyses revealed that the new blood fluke belongs to the genus Cardicola despite the marked morphological differences. Thus, this aporocotylid is named Cardicola opisthorchis n. sp. and the generic diagnosis is emended in this paper. In addition, 100% identity among the ITS2 sequences from the present species, Cardicola sp. from T. orientalis in Mexico and Cardicola sp. from the northern bluefin tuna, Thunnus thynnus (Linnaeus) in Spain suggests that C. opisthorchis n. sp. has a broad geographical distribution and that it infects both the Pacific and northern bluefin tuna.  相似文献   
47.
Kudoa prunusi n. sp. (Myxozoa; Multivalvulida) is described from the brain of Pacific bluefin tuna Thunnus orientalis cultured in Japan. Numerous white cysts, up to 0.5mm in size, were found on and in the brain. Spores having typically five spore valves and five polar capsules resembled a five-petal cherry blossom in apical view and were conical shape with a round bottom in side view. Average spore size was 9.63 (8.5-10.3) μm in width and 7.50 (6.7-8.6) μm in length. The spore dimensions of K. prunusi overlapped with those of Kudoa yasunagai ex Sillago ciliata having five to six spore valves, but they were clearly distinct in spore shape, 18S rDNA and 28S rDNA sequences (0.3% and 1.7% differences, respectively). Phylogenetic analysis of 18S rDNA revealed that K. prunusi grouped with the brain-infecting multivalvulid species, K. yasunagai, K. chaetodoni, K. lethrini and K. neurophila, rather than five-valved Kudoa spp. Combined with morphological, molecular and biological differences, K. prunusi was proven to be a new species.  相似文献   
48.
SH2-containing inositol phosphatase 2 (SHIP2) is a physiologically important negative regulator of insulin signaling by hydrolyzing the phosphatidylinositol (PI) 3-kinase product PI 3,4,5-trisphosphate in the target tissues of insulin. Targeted disruption of the SHIP2 gene in mice resulted in increased insulin sensitivity without affecting biological systems other than insulin signaling. Therefore, we investigated the molecular mechanisms by which SHIP2 specifically regulates insulin-induced metabolic signaling in 3T3-L1 adipocytes. Insulin-induced phosphorylation of Akt, one of the molecules downstream of PI3-kinase, was inhibited by expression of wild-type SHIP2, whereas it was increased by expression of 5'-phosphatase-defective (DeltaIP) SHIP2 in whole cell lysates. The regulatory effect of SHIP2 was mainly seen in the plasma membrane (PM) and low density microsomes but not in the cytosol. In this regard, following insulin stimulation, a proportion of Akt2, and not Akt1, appeared to redistribute from the cytosol to the PM. Thus, insulin-induced phosphorylation of Akt2 at the PM was predominantly regulated by SHIP2, whereas the phosphorylation of Akt1 was only minimally affected. Interestingly, insulin also elicited a subcellular redistribution of both wild-type and DeltaIP-SHIP2 from the cytosol to the PM. The degree of this redistribution was inhibited in part by pretreatment with PI3-kinase inhibitor. Although the expression of a constitutively active form of PI3-kinase myr-p110 also elicited a subcellular redistribution of SHIP2 to the PM, expression of SHIP2 appeared to affect the myr-p110-induced phosphorylation, and not the translocation, of Akt2. Furthermore, insulin-induced phosphorylation of Akt was effectively regulated by SHIP2 in embryonic fibroblasts derived from knockout mice lacking either insulin receptor substrate-1 or insulin receptor substrate-2. These results indicate that insulin specifically stimulates the redistribution of SHIP2 from the cytosol to the PM independent of 5'-phosphatase activity, thereby regulating the insulin-induced translocation and phosphorylation of Akt2 at the PM.  相似文献   
49.
Although tissue-specific apoptosis in the exocrine glands in estrogen-deficient mice may contribute to the development of autoimmune exocrinopathy, the molecular mechanism responsible for tissue-specific apoptosis remains obscure. Here we show that RbAp48 overexpression induces p53-mediated apoptosis in the exocrine glands caused by estrogen deficiency. RbAp48-inducible transfectant results in rapid apoptosis with p53 phosphorylation (Ser9) and alpha-fodrin cleavage. Reducing the expression of RbAp48 through small interfering RNA inhibits the apoptosis. Prominent RbAp48 expression with apoptosis was observed in the exocrine glands of C57BL/6 ovariectomized (OVX) mice but not in OVX estrogen receptor alpha(-/-), p53(-/-), and E2F-1(-/-) mice. Indeed, transgenic expression of the RbAp48 gene induced apoptosis in the exocrine glands but not in other organs. These findings indicate that estrogen deficiency initiates p53-mediated apoptosis in the exocrine gland cells through RbAp48 overexpression and exerts a possible gender-based risk of autoimmune exocrinopathy in postmenopausal women.  相似文献   
50.
Mammalian lefty and zebrafish antivin, highly related to lefty, are shown to be expressed asymmetrically and involved in the specification of the left body side of early embryos. We isolated a chick homologue of the antivin/lefty1 cDNA and studied its expression pattern during early chick development. We found that antivin/lefty1 is expressed asymmetrically on the left side of the prospective floorplate, notochord and lateral plate mesoderm of the chick embryo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号