首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   2篇
  58篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2000年   2篇
  1998年   5篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1986年   1篇
  1984年   2篇
  1971年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
51.
The HNK-1 carbohydrate epitope is found on many neural cell adhesion molecules. Its structure is characterized by a terminal sulfated glucuronyl acid. The glucuronyltransferases, GlcAT-P and GlcAT-S, are involved in the biosynthesis of the HNK-1 epitope, GlcAT-P as the major enzyme. We overexpressed and purified the recombinant human GlcAT-P from Escherichia coli. Analysis of its enzymatic activity showed that it catalyzed the transfer reaction for N-acetyllactosamine (Galbeta1-4GlcNAc) but not lacto-N-biose (Galbeta1-3GlcNAc) as an acceptor substrate. Subsequently, we determined the first x-ray crystal structures of human GlcAT-P, in the absence and presence of a donor substrate product UDP, catalytic Mn(2+), and an acceptor substrate analogue N-acetyllactosamine (Galbeta1-4GlcNAc) or an asparagine-linked biantennary nonasaccharide. The asymmetric unit contains two independent molecules. Each molecule is an alpha/beta protein with two regions that constitute the donor and acceptor substrate binding sites. The UDP moiety of donor nucleotide sugar is recognized by conserved amino acid residues including a DXD motif (Asp(195)-Asp(196)-Asp(197)). Other conserved amino acid residues interact with the terminal galactose moiety of the acceptor substrate. In addition, Val(320) and Asn(321), which are located on the C-terminal long loop from a neighboring molecule, and Phe(245) contribute to the interaction with GlcNAc moiety. These three residues play a key role in establishing the acceptor substrate specificity.  相似文献   
52.
Two cDNA clones, cATMPK1 and CATMPK2, encoding MAP kinases (mitogen-activated protein kinases) have been cloned from Arabidopsis thaliana and their nucleotide sequences have been determined. Putative proteins encoded by ATMPK1 and ATMPK2 genes, designated ATMPK1 and ATMPK2, contain 370 and 376 amino acid residues, respectively, and are 88.7% identical at the amino acid sequence level. ATMPK1 and ATMPK2 exhibit significant similarity to rat ERK2 (49%) and Xenopus MAP kinase (50%). The amino acid residues corresponding to the sites of phosphorylation (Thr-Glu-Tyr) that are involved in the activation of MAP kinases are conserved in ATMPK1 and ATMPK2. Northern blot analysis indicates that the ATMPK1 and ATMPK2 mRNAs are significantly present in all the organs except seeds. Genomic Southern blot analysis suggests that there are a few additional genes that are related to ATMPK1 and ATMPK2 in the Arabidopsis genome. Purified Xenopus MAP kinase kinase (MAPK kinase) phosphorylates ATMPK1 and ATMPK2 proteins that have been expressed in Escherichia coli, activating these enzymes. A rapid and transient activation of 46-kDa protein kinase activity that phosphorylated myelin basic protein (MBP) was detected when auxinstarved tobacco BY-2 cells were treated with synthetic auxin, 2,4-dichlorophenoxyacetic acid (2,4-D). Protein kinase activities which phosphorylated the recombinant ATMPK2 protein also increased rapidly after auxin treatment in the auxin-starved BY-2 cells. These results suggest that auxin may function as an activator of plant MAP kinase homologues, as do various mitogens in animal systems.  相似文献   
53.
54.
Soluble carbonic anhydrase (CA, EC 4.2.1.1) inducible by low levels of CO2 was purified from the unicellular green alga Chlorella sorokiniana grown at alkaline pH. The purified CA had a specific activity of 2,300 units (mg protein)−1. The molecular mass of the CA was found to be 100 kDa by non-dissociating (native)-polyacrylamide gel electrophoresis and 50 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 50-kDa subunit was recognized by concanavalin A. These results suggest that the protein has a dimeric form with two 50-kDa subunits that are glycosylated in an asparagine-linked manner. The native CA was revealed by isoelectric focusing to be a very acidic protein with an isoelectric point of 4.2. About 60% of the CA activity was inhibited by 0.5 M NaCl. The enzyme was inactivated over 95% by preincubation with 50 mM dithiothreitol but not with 1 mM dithiothreitol. After partial amino acid sequence analysis, a cDNA clone of the CA was isolated and characterized. The cloned cDNA fragment encoded a 348-amino-acid polypeptide (36,709 Da) including an NH2-terminal hydrophobic signal peptide composed of 35 amino acids (3,725 Da). Conserved regions of sequences found in animal CAs, in the periplasmic (pCA) and the intracellular CAs of Chlamydomonas, and in the plasma-membrane-bound CA of Dunaliella (Dca) were also found in this Chlorella CA. The signal sequence was significantly homologous to the pCA and the Dca. The internal signal sequence between the large and the small subunits reported for pCA was not found in this Chlorella CA. The soluble CA of this alga was an α-type CA with salt-sensitive, periplasm-locating and acidic properties and very different from pCA and Dca with their salt-sensitive/neutral and salt-resistant/acidic properties, respectively. Received: 25 May 1998 / Accepted: 9 July 1998  相似文献   
55.

-

DOI: http://dx.doi.org/10.1065/lca2006.04.018

Goal, Scope and Background

Life cycle assessment has emerged into a useful tool to assess and potentially reduce the environmental impacts per functional unit. This has contributed to increase eco-efficiency but not necessarily to decrease absolute pollution per capita. The number of functional units is increasing and new functions add to the impacts of consumption. Despite the attempts to use different levels of definitions for the functional unit and applying LCA in the field of lifestyle studies there has been little success to grasp the consumption side of sustainable production and consumption. This contribution aims to tackle the consumption side by at least two extensions: the function of products, services, and activities is assessed with a multi-attribute need function and the propensity to cause both psychological and physical rebound effects are considered in the design phase.

Methods

We develop a checklist approach with an evaluation and assessment table. The elements of the checklist are rooted in a number of independent fields of science: needs matrix, happiness enhancing factors, a number of limiting factors that can cause rebound effects, and streamlined LCA.

Results and Conclusion

For illustration purposes we comparatively evaluate gardening, having a dog, a weekend house, and starting yoga classes and show that the new analysis framework is able to make transparent and operable the inclusion of a number of additional factors that remained so far implicit or neglected. The additional factors considered can be grouped into factors that may cause rebound effects through psychological or physical mechanisms. The assessment table combines the degree of satisfying needs and enhancing happiness in a psychological rebound score. The physical rebound score considers six factors that may constrain consumption: Costs, time, space, other scarce resources, information, and skills. This allows predicting the potential for rebound effects that would increase total impacts from consumption. In addition, it gives also a handle on how to use the knowledge on rebound effects to not only reduce the impacts of the product or activity at hand but also reducing other consumption that in turn might have adverse impacts.

Recommendation and Perspective

Many assumptions in selecting and quantifying the additional factors and the final assessment procedure remain conceptual and therefore provisional. This contribution opens new avenues of investigations that need both further refinements of the theories and empirical evidence. Consumerism and materialism has undermined much of the success stories of improved eco-efficiency and LCA. We suggest using some of the very same psychological and physical mechanisms to foster sustainable consumption.
  相似文献   
56.
The HNK-1 carbohydrate, which is recognized by anti-HNK-1 antibody, is well known to be expressed predominantly in the nervous system. The characteristic structural feature of the HNK-1 carbohydrate is 3-sulfo-glucuronyl residues attached to lactosamine structures (Gal beta1-4GlcNAc) on glycoproteins and glycolipids. The biosynthesis of the HNK-1 carbohydrate is regulated mainly by two glucuronyltransferases (GlcAT-P and GlcAT-S) and a sulfotransferase. In this study, we found that GlcAT-S mRNA was expressed at higher levels in the kidney than in the brain, but that both GlcAT-P and HNK-1 sulfotransferase mRNAs, which were expressed at high levels in the brain, were not detected in the kidney. These results suggested that the HNK-1 carbohydrate without sulfate (non-sulfated HNK-1 carbohydrate) is expressed in the kidney. We substantiated this hypothesis using two different monoclonal antibodies: one (anti-HNK-1 antibody) requires sulfate on glucuronyl residues for its binding, and the other (antibody M6749) does not. Western blot analyses of mouse kidney revealed that two major bands (80 and 140 kDa) were detected with antibody M6749, but not with anti-HNK-1 antibody. The 80- and 140-kDa band materials were identified as meprin alpha and CD13/aminopeptidase N, respectively. We also confirmed the presence of the non-sulfated HNK-1 carbohydrate on N-linked oligosaccharides by multistage tandem mass spectrometry. Immunofluorescence staining with antibody M6749 revealed that the non-sulfated HNK-1 carbohydrate was expressed predominantly on the apical membranes of the proximal tubules in the cortex and was also detected in the thin ascending limb in the inner medulla. This is the first study indicating the presence of the non-sulfated HNK-1 carbohydrate being synthesized by GlcAT-S in the kidney. The results presented here constitute novel knowledge concerning the function of the HNK-1 carbohydrate.  相似文献   
57.
58.
The HNK-1 carbohydrate epitope, a sulfated glucuronic acid at the non-reducing terminus of glycans, is expressed characteristically on a series of cell adhesion molecules and is synthesized through a key enzyme, glucuronyltransferase (GlcAT-P). We generated mice with a targeted deletion of the GlcAT-P gene. The GlcAT-P -/- mice exhibited normal development of gross anatomical features, but the adult mutant mice exhibited reduced long term potentiation at the Schaffer collateral-CA1 synapses and a defect in spatial memory formation. This is the first evidence that the loss of a single non-reducing terminal carbohydrate residue attenuates brain higher functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号