首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2933篇
  免费   144篇
  国内免费   3篇
  3080篇
  2022年   10篇
  2021年   19篇
  2019年   16篇
  2018年   23篇
  2017年   17篇
  2016年   27篇
  2015年   48篇
  2014年   68篇
  2013年   251篇
  2012年   156篇
  2011年   146篇
  2010年   91篇
  2009年   87篇
  2008年   159篇
  2007年   162篇
  2006年   171篇
  2005年   180篇
  2004年   186篇
  2003年   205篇
  2002年   192篇
  2001年   30篇
  2000年   16篇
  1999年   29篇
  1998年   50篇
  1997年   49篇
  1996年   35篇
  1995年   32篇
  1994年   35篇
  1993年   24篇
  1992年   37篇
  1991年   26篇
  1990年   18篇
  1989年   24篇
  1988年   30篇
  1987年   20篇
  1986年   12篇
  1985年   24篇
  1984年   32篇
  1983年   31篇
  1982年   44篇
  1981年   34篇
  1980年   30篇
  1979年   19篇
  1978年   20篇
  1977年   20篇
  1976年   16篇
  1975年   21篇
  1974年   14篇
  1973年   12篇
  1972年   13篇
排序方式: 共有3080条查询结果,搜索用时 0 毫秒
931.
Two 3-(7′-theophyllyl)glycals, (IV) and (V), were synthesized by fusion of theophylline and the appropriate glycals in the presence of p-toluenesulfonic acid. The structure and stereochemistry of the glycals were determined mainly from NMR analysis of their dihydro and 1,6-anhydro derivatives.  相似文献   
932.
A kinetic analysis of splitting oligomeric substrates by poly(β-D-mannuronate)lyases (alginate lyases I, SP1 and SP2) from a marine mollusk was done. Monomer and oligomers of mannuronate and guluronate were prepared by hydrolyzing poly β-1,4-D-mannuronate and poly α-1,4-L-guluronate from alginate with H2SO4, respectively, and thereafter by gel filtration on a Bio-Gel P-2 column. Alginate lyases I apparently did not act on the trimer of mannuronate but did on the tetramer or those longer than that, indicating the increased kcad/Km with increasing polymerization degree. The kinetic analyses suggest that the size of the subsite structure of the enzymes is most likely to be able to bind the linear pentamer of mannuronate units.  相似文献   
933.
The acidic and the basic subunits were shown to be present in equimolar amounts in the 11S globulin molecule by the densitometric scanning of the SDS gel and the molecular weight consideration. The four acidic subunits (A1, A2, A3 and A4) were found to be present in the approximate molar ratio of 1:1:2:2. Four basic subunits separated and designated as B1, B2, B3 and B4 based on the relative mobilities in the acidic gel in 7 m urea were found to be present in the approximate molar ratio of 1:1:2:2. The four basic subunits were fractionated in approximately same amounts into three different peaks, peak I (B1 and B2), peak II (B3) and peak III (B4) by CM-Sephadex C–50 column chromatography in the presence of 6 m urea. Three kinds of intermediary subunits of 11S globulin were fractionated with DEAE-Sephadex A–50 in the absence of reducing agents in 6 m urea, and disulfide bonds appeared to participate in the binding between the acidic and the basic subunits in the molar ratio of 1: 1 with the following combinations; A1 and A2 combined with B3, A3 with B1 and B2, and A4 with B4. In view of the above results and molecular weight consideration, a new model of subunit structure was proposed for 11S globulin.  相似文献   
934.
The effects of cellulose on the production and stimulation of β-transglycosylase were studied. The β-transglycosylase of Trichoderma longibrachiatum was produced specifically in the presence of cellulose in Czapeck-Dox medium containing sucrose as a sole carbon source. The enzyme activity was stimulated by the addition of cellulose in the reaction mixture, where the transfer reaction product (a water-insoluble glucan) was apparently synthesized on the surface of the added cellulose fibers.

The hyphal wall fraction of the fungus had the same stimulatory effect on β-transglycosylase as the cellulose fibers. A cellulose-like material in this fraction was found by partial acid hydrolysis and gas chromatography. Cellotriose was the smallest substrate effective for the synthesis of a water-insoluble glucan in the presence of cellulose by the β-transglycosylase, though a significant amount of glucan could not be synthesized without the addition of cellulose.  相似文献   
935.
Cerebral malaria is a major, life-threatening complication of Plasmodium falciparum malaria, and has very high mortality rate. In murine malaria models, natural killer (NK) cell responses have been shown to play a crucial role in the pathogenesis of cerebral malaria. To investigate the role of NK cells in the developmental process of human cerebral malaria, we conducted a case-control study examining genotypes for killer immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) class I ligands in 477 malaria patients. We found that the combination of KIR2DL3 and its cognate HLA-C1 ligand was significantly associated with the development of cerebral malaria when compared with non-cerebral malaria (odds ratio 3.14, 95% confidence interval 1.52–6.48, P = 0.00079, corrected P = 0.02). In contrast, no other KIR-HLA pairs showed a significant association with cerebral malaria, suggesting that the NK cell repertoire shaped by the KIR2DL3-HLA-C1 interaction shows certain functional responses that facilitate development of cerebral malaria. Furthermore, the frequency of the KIR2DL3-HLA-C1 combination was found to be significantly lower in malaria high-endemic populations. These results suggest that natural selection has reduced the frequency of the KIR2DL3-HLA-C1 combination in malaria high-endemic populations because of the propensity of interaction between KIR2DL3 and C1 to favor development of cerebral malaria. Our findings provide one possible explanation for KIR-HLA co-evolution driven by a microbial pathogen, and its effect on the global distribution of malaria, KIR and HLA.  相似文献   
936.
The evolution of basal synthetic formulations to support mammalian cell culture applications has been facilitated by the contributions of many investigators. Definition of minimally-required nutrient categories by Harry Eagle in the 1950's spawned an iterative process of continuous modification and refinement of the exogenous environment to cultivate new cell types and to support emerging applications of cultured mammalian cells. Key historical elements are traced, leading to the development of high potency, basal nutrient formulations capable of sustaining serum-free proliferation and biological production. Emerging techniques for alimentation of fed batch and continuous perfusion bioreactors, using partial nutrient concentrates deduced from spent medium analysis, can enhance medium utilization and bioreactor productivity.  相似文献   
937.
Synchronization is a powerful technique for understanding cell cycle events. Here, we describe the procedure for synchronizing tobacco bright yellow 2 (BY-2) cell line, with which an exceptionally high level of synchrony can be achieved. It basically relies on an "arrest-and-release" strategy using aphidicolin, an inhibitor of DNA replication, and propyzamide, a plant-microtubule disruptant. In a single-step process using aphidicolin alone, a cell population with about 70% of the cells at mitosis can be achieved, whereas by a two-step method using the two inhibitors sequentially, the level of synchrony can reach over 90%. The method of choice depends not only on the peak mitotic cell proportion but also on the cell cycle stage that is targeted for analysis. Both procedures take about 1.5 days, and cell cycle progression can be observed from the S phase to the next G1 phase at about 12 h after a 24 h-period treatment with aphidicolin.  相似文献   
938.
A highly sensitive and specific method for the determination of josamycin in human plasma by LC–MS was developed and validated. Josamycin was extracted from human plasma by a single-step liquid–liquid extraction and analyzed by LC–MS via an electrospray ionization interface. Selected ion monitoring was used to detect josamycin and its internal standard. The intra-day precision and accuracy, expressed as C.V. and R.E., ranged from 2.8% to 13.5% and −10.3% to 7.6%, respectively. The lower limit of detection was 0.1 ng/ml and the lower limit of quantitation was set at 1 ng/ml when 0.5 ml of plasma was used. No endogenous interference was observed in human plasma obtained from drug-free volunteers.  相似文献   
939.
Extracellular glutamate should be maintained at low levels to conserve optimal neurotransmission and prevent glutamate neurotoxicity in the brain. Excitatory amino acid transporters (EAATs) play a pivotal role in removing extracellular glutamate in the central nervous system (CNS). Excitatory amino acid carrier 1 (EAAC1) is a high-affinity Na+-dependent neuronal EAAT that is ubiquitously expressed in the brain. However, most glutamate released in the synapses is cleared by glial EAATs, but not by EAAC1 in vivo. In the CNS, EAAC1 is widely distributed in somata and dendrites but not in synaptic terminals. The contribution of EAAC1 to the control of extracellular glutamate levels seems to be negligible in the brain. However, EAAC1 can transport not only extracellular glutamate but also cysteine into the neurons. Cysteine is an important substrate for glutathione (GSH) synthesis in the brain. GSH has a variety of neuroprotective functions, while its depletion induces neurodegeneration. Therefore, EAAC1 might exert a critical role for neuroprotection in neuronal GSH metabolism rather than glutamatergic neurotransmission, while EAAC1 dysfunction would cause neurodegeneration. Despite the potential importance of EAAC1 in the brain, previous studies have mainly focused on the glutamate neurotoxicity induced by glial EAAT dysfunction. In recent years, however, several studies have revealed regulatory mechanisms of EAAC1 functions in the brain. This review will summarize the latest information on the EAAC1-regulated neuroprotective functions in the CNS.  相似文献   
940.

Background  

Mast cells have been documented to have several key functions with regards to malignant neoplasms. However, the functional significance of their accumulation is largely unknown. An analysis of the mast cell profile in mediastinal lymph nodes from lung cancer patients is reported here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号