首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1519篇
  免费   98篇
  1617篇
  2022年   8篇
  2021年   7篇
  2020年   9篇
  2019年   14篇
  2018年   16篇
  2017年   27篇
  2016年   22篇
  2015年   31篇
  2014年   38篇
  2013年   83篇
  2012年   62篇
  2011年   80篇
  2010年   43篇
  2009年   49篇
  2008年   71篇
  2007年   65篇
  2006年   59篇
  2005年   64篇
  2004年   63篇
  2003年   70篇
  2002年   65篇
  2001年   53篇
  2000年   40篇
  1999年   54篇
  1998年   23篇
  1997年   17篇
  1996年   14篇
  1995年   10篇
  1994年   16篇
  1993年   20篇
  1992年   41篇
  1991年   39篇
  1990年   30篇
  1989年   40篇
  1988年   34篇
  1987年   21篇
  1986年   17篇
  1985年   22篇
  1984年   25篇
  1983年   13篇
  1982年   10篇
  1981年   16篇
  1980年   12篇
  1979年   13篇
  1978年   22篇
  1977年   11篇
  1975年   5篇
  1974年   5篇
  1973年   9篇
  1969年   5篇
排序方式: 共有1617条查询结果,搜索用时 0 毫秒
61.
62.
The EPR study of cytochrome c in which FE(III) ion is replaced with Cu(II) shows that there are two types of monomer (a: 4 less than pH less than 6, and b: 6 less than pH less than 11.5) and two types of dimer (A: pH less than 4 and B: pH less than 11.5) formed depending upon the pH value of the solution. Computer simulation of the EPR spectra of the dimers indicates that the structure of the dimer A has a larger lateral shift than in the dimer B. It is also shown that in monomer a, the imidazole nitrogen of 18-His is not bound to Cu(II), while it is bound in the monomer b. In the undeca- and octapeptide of Cu(II)-cytochrome c, polymers are formed in acidic solutions. As the pH is raised, depolymerization proceeds to yield the monomer and the dimer. The structure of the dimer in both peptides is found to be similar to that of the dimer B of Cu(II)-cytochrome c. In the monomer of the peptides, neither the imidazole of 18-His nor the imidazole added in excess is bound to Cu(II) in the entire pH range. It is also concluded that the dimerization in Cu(II)-porphyrins interferes with the apical coordination of basic ligand, or vice versa.  相似文献   
63.
NBS1 (p95), the protein responsible for Nijmegen breakage syndrome, shows a weak homology to the yeast Xrs2 protein at the N terminus region, known as the forkhead-associated (FHA) domain and the BRCA1 C terminus domain. The protein interacts with hMRE11 to form a complex with a nuclease activity for initiation of both nonhomologous end joining and homologous recombination. Here, we show in vivo direct evidence that NBS1 recruits the hMRE11 nuclease complex into the cell nucleus and leads to the formation of foci by utilizing different functions from several domains. The amino acid sequence at 665-693 on the C terminus of NBS1, where a novel identical sequence with yeast Xrs2 protein was found, is essential for hMRE11 binding. The hMRE11-binding region is necessary for both nuclear localization of the complex and for cellular radiation resistance. On the other hand, the FHA domain regulates nuclear foci formation of the multiprotein complex in response to DNA damage but is not essential for nuclear transportation of the complex and radiation resistance. Because the FHA/BRCA1 C terminus domain is widely conserved in eukaryotic nuclear proteins related to the cell cycle, gene regulation, and DNA repair, the foci formation could be associated with many phenotypes of Nijmegen breakage syndrome other than radiation sensitivity.  相似文献   
64.
The periodic responses of a mathematical neuron model, when periodically varying input stimuli are applied to the model, are investigated. An explicit representation of periodic responses is obtained. It is shown that a periodic response as a 0–1 string is a uniform string. That is, the 1's of the 0–1 string are distributed uniformly in the string.  相似文献   
65.
The Schizosaccharomyces pombe Ku70–Ku80 heterodimer is required for telomere length regulation. Lack of pku70+ results in telomere shortening and striking rearrangements of telomere-associated sequences. We found that the rearrangements of telomere-associated sequences in pku80+ mutants are Rhp51 dependent, but not Rad50 dependent. Rhp51 bound to telomere ends when the Ku heterodimer was not present at telomere ends. We also found that the single-stranded G-rich tails increased in S phase in wild-type strains, while deletion of pku70+ increased the single-stranded overhang in both G2 and S phase. Based on these observations, we propose that Rhp51 binds to the G-rich overhang and promotes homologous pairing between two different telomere ends in the absence of Ku heterodimer. Moreover, pku80 rhp51 double mutants showed a significantly reduced telomere hybridization signal. Our results suggest that, although Ku heterodimer sequesters Rhp51 from telomere ends to inhibit homologous recombination activity, Rhp51 plays important roles for the maintenance of telomere ends in the absence of the Ku heterodimer.  相似文献   
66.
We have found that two previously reported exonic mutations in the PINK1 and PARK7 genes affect pre-mRNA splicing. To develop an algorithm to predict underestimated splicing consequences of exonic mutations at the 5′ splice site, we constructed and analyzed 31 minigenes carrying exonic splicing mutations and their derivatives. We also examined 189 249 U2-dependent 5′ splice sites of the entire human genome and found that a new variable, the SD-Score, which represents a common logarithm of the frequency of a specific 5′ splice site, efficiently predicts the splicing consequences of these minigenes. We also employed the information contents (Ri) to improve the prediction accuracy. We validated our algorithm by analyzing 32 additional minigenes as well as 179 previously reported splicing mutations. The SD-Score algorithm predicted aberrant splicings in 198 of 204 sites (sensitivity = 97.1%) and normal splicings in 36 of 38 sites (specificity = 94.7%). Simulation of all possible exonic mutations at positions −3, −2 and −1 of the 189 249 sites predicts that 37.8, 88.8 and 96.8% of these mutations would affect pre-mRNA splicing, respectively. We propose that the SD-Score algorithm is a practical tool to predict splicing consequences of mutations affecting the 5′ splice site.  相似文献   
67.
68.
DNA methylation is a prevalent epigenetic modification in vertebrates, and it has been shown to be involved the regulation of gene expression and embryo development. However, it remains unclear how DNA methylation regulates sexual development, especially in species without sex chromosomes. To determine this, we utilized zebrafish to investigate DNA methylation reprogramming during juvenile germ cell development and adult female-to-male sex transition.We reveal that primordial germ cells(PGCs) undergo significant DNA methylation reprogramming during germ cell development, and the methylome of PGCs is reset to an oocyte/ovary-like pattern at 9 days post fertilization(9 dpf). When DNA methyltransferase(DNMT) activity in juveniles was blocked after 9 dpf, the zebrafish developed into females. We also show that Tet3 is involved in PGC development. Notably, we find that DNA methylome reprogramming during adult zebrafish sex transition is similar to the reprogramming during the sex differentiation from 9 dpf PGCs to sperm. Furthermore, inhibiting DNMT activity can prevent the female-to-male sex transition, suggesting that methylation reprogramming is required for zebrafish sex transition. In summary, DNA methylation plays important roles in zebrafish germ cell development and sexual plasticity.  相似文献   
69.
Spinocerebellar ataxia type 10 (SCA10) is one of numerous genetic disorders that result from simple repeat expansions. SCA10 is caused by expansion of an intronic ATTCT pentanucleotide repeat tract. It is clinically characterized by progressive ataxia, seizures, and anticipation, which can vary within and between families. We report two SCA10 families showing distinct frequencies of seizures and correlations of repeat length with age at onset. One family displayed uninterrupted ATTCT expansions, whereas the other showed multiple interruptions of the repeat by nonconsensus repeat units, which differed both in the length and/or sequence of the repeat unit. Disease-causing microsatellite expansions have been assumed to be composed of uninterrupted pure repeats. Our findings for SCA10 challenge this convention and suggest that the purity of the expanded repeat element may be a disease modifier.  相似文献   
70.
Theobroxide, a natural product, strongly stimulates the biosynthesis of jasmonic acid (JA) in Pharbitis nil. In this study, we investigated the accumulation of protein by the immunoblot analysis of lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC), key enzymes in JA biosynthesis, and how the endogenous levels of JA in P. nil are affected by theobroxide. The effect of JA on the accumulations of these proteins was monitored simultaneously. The results show that theobroxide treatment led to a high level accumulation of JA, which is due to high accumulations of LOX, AOS, and AOC proteins induced by theobroxide treatment both under short day (SD) and long day (LD) conditions. However, under SD conditions AOS and AOC proteins are not enhanced by JA treatment. Kinetic analysis of protein levels shows that a biphasic activation of AOC protein by theobroxide is displayed and the first activation of AOC protein together with elevated JA levels is observed within 30min after treatment. Meanwhile, AOS and LOX proteins are activated by theobroxide later than AOC protein, suggesting that AOC plays an essential role in the initial JA formation induced by theobroxide. Since theobroxide-increased JA levels also show a biphasic manner similar to AOC activation and AOS, LOX proteins are activated later than AOC, and thus we propose a positive JA feedback regulation. Interestingly, AOS protein, which is also the enzyme for the biosynthesis of 9,10-ketol-octadecadienoic acid (KODA, a flowering inducing factor), accumulates markedly due to the simultaneous involvement of theobroxide and SD conditions, suggesting that AOS probably plays a role in flower bud formation in P. nil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号