首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   7篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   13篇
  2012年   12篇
  2011年   10篇
  2010年   6篇
  2009年   4篇
  2008年   12篇
  2007年   17篇
  2006年   7篇
  2005年   6篇
  2004年   10篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   7篇
  1999年   5篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   2篇
  1967年   1篇
排序方式: 共有170条查询结果,搜索用时 78 毫秒
81.
Human serum albumin (HSA) contributes to the stabilization of (-)-epigallocatechin gallate (EGCg) in serum. We characterize in the present study the mechanisms for preventing EGCg oxidation by HSA. EGCg was stable in human serum or buffers with HSA, but (-)-epigallocatechin (EGC) was unstable. We show by comparing EGCg and EGC in a neutral buffer that EGCg had a higher binding affinity than EGC. This indicates that the galloyl moiety participated in the interaction of EGCg with HSA and that this interaction was of critical importance in preventing EGCg oxidation. The binding affinity of EGCg for HSA and protein carbonyl formation in HSA were enhanced in an alkaline buffer. These results suggest the reversible covalent modification of EGCg via Schiff-base formation, and that the immobilization of EGCg to HSA, through the formation of a stable complex, prevented the polymerization and decomposition of EGCg in human serum.  相似文献   
82.
Bioactive N-acylethanolamines (NAEs) include palmitoylethanolamide, oleoylethanolamide, and anandamide, which exert anti-inflammatory, anorexic, and cannabimimetic actions, respectively. The degradation of NAEs has been attributed to two hydrolases, fatty acid amide hydrolase and NAE acid amidase (NAAA). Acid ceramidase (AC) is a lysosomal enzyme that hydrolyzes ceramide (N-acylsphingosine), which resembles NAAA in structure and function. In the present study, we examined the role of AC in the degradation of NAEs. First, we demonstrated that purified recombinant human AC can hydrolyze various NAEs with lauroylethanolamide (C12:0-NAE) as the most reactive NAE substrate. We then used HEK293 cells metabolically labeled with [14C]ethanolamine, and revealed that overexpressed AC lowered the levels of 14C-labeled NAE. As analyzed with liquid chromatography-tandem mass spectrometry, AC overexpression decreased the amounts of different NAE species. Furthermore, suppression of endogenous AC in LNCaP prostate cells by siRNA increased the levels of various NAEs. Lastly, tissue homogenates from mice genetically lacking saposin D, a presumable activator protein of AC, showed much lower hydrolyzing activity for NAE as well as ceramide than the homogenates from wild-type mice. These results demonstrate the ability of AC to hydrolyze NAEs and suggest its physiological role as a third NAE hydrolase.  相似文献   
83.
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant capacity of the cell. This imbalance and an excess of ROS induce tissue/cellular damage, which are implicated in chronic inflammation disorders such as obesity, insulin resistance, and metabolic syndromes. Peroxiredoxins (Prxs) are the most abundant and ancient cellular antioxidant proteins that help to control intracellular peroxide levels and ROS-dependent signaling. Of the six mammalian isoforms, Prx III is specifically localized in mitochondria. In this study, we detected novel associations between genetic variations of the PRDX3 gene and BMI and obesity risk in the general Japanese population. In addition, these associations were observed only in the subjects with high dietary fat intake, but not in the subjects with low dietary fat intake. These findings indicate that the interaction between genetic variations in the PRDX3 gene and dietary fat intake is important for modulation of BMI and obesity risk.  相似文献   
84.
While Wiskott-Aldrich syndrome protein (WASP) plays critical roles in TCR signaling as an adaptor molecule, how it transduces innate immune signals remains to be elucidated. To investigate the roles of WASP in innate immune cells, we established bone marrow-derived macrophage (BMDM) cell lines from WASP15 transgenic (Tg) mice overexpressing the WASP N-terminal region (exons 1-5). Upon LPS stimulation, WASP15 Tg BMDM cell lines produce lower levels of inflammatory cytokines, such as TNF-α, IL-6, and IL-12p40 than the wild-type BMDM cell line. In addition, the production of nitric oxide by WASP15 Tg BMDM cells in response to LPS and IFN-γ was significantly impaired. Furthermore, we uncovered that the WASP N-terminal domain associates with the Src homology (SH) 3 domain of Bruton's tyrosine kinase (Btk). Overexpression of the WASP N-terminal domain diminishes the extent of tyrosine phosphorylation of endogenous WASP in WASP15 Tg BMDM cells, possibly by interfering with the specific binding between endogenous WASP and Btk during LPS signaling. These observations strongly suggest that the interaction between WASP N-terminal domain and Btk plays important roles in the LPS signaling cascade in innate immunity.  相似文献   
85.
86.
The growth rate of the α-crystal of L-glutamic acid was measured under various degrees of supersaturation and temperatures. The rate constants and the activation energies for (0 0 1) and (1 1 1) faces were measured and the latter values were 6.7 and 11.5 kcal/mol, respectively. The controlling process of the α-crystal growth was investigated by comparison of Sherwood numbers of dissolution and crystallization, and the crystallization process was found to be controlled by the surface reaction.  相似文献   
87.
88.
(23S)-25-Dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) functions an antagonist of the 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) nuclear receptor (VDR)-mediated differentiation of human leukemia (HL-60) cells [J. Biol. Chem. 274 (1999) 16392]. We examined the effect of vitamin D antagonist, TEI-9647, on osteoclast formation induced by 1alpha,25-(OH)(2)D(3) from bone marrow cells of patients with Paget's disease. TEI-9647 itself never induced osteoclast formation even at 10(-6)M, but dose-dependently (10(-10) to 10(-6)M) inhibited osteoclast formation induced by physiologic concentrations of 1alpha,25-(OH)(2)D(3) (41 pg/ml, 10(-10)M) from bone marrow cells of patients with Paget's disease. At the same time, 10(-8)M of TEI-9647 alone did not cause 1alpha,25-(OH)(2)D(3) dependent gene expression, but almost completely suppressed TAF(II)-17, a potential coactivator of VDR and 25-hydroxyvitamin D(3)-24-hydroxylase (25-OH-D(3)-24-hydroxylase) gene expression induced by 10(-10)M 1alpha,25-(OH)(2)D(3) in bone marrow cells of patients with Paget's disease. Moreover, TEI-9647 dose-dependently inhibited bone resorption induced by 10(-9)M 1alpha,25-(OH)(2)D(3) by osteoclasts produced by RANKL and M-CSF treatment of measles virus nucleocapsid gene transduced bone marrow cells. These results suggest that TEI-9647 acts directly on osteoclast precursors and osteoclasts, and that TEI-9647 may be a novel agent to suppress the excessive bone resorption and osteoclast formation in patients with Paget's disease.  相似文献   
89.
90.
Leukemia inhibitory factor (LIF) and macrophage colony stimulating factor (M-CSF), members of the group of hemopoietic cytokines, play a primary role in the control of embryo development and implantation and in the growth of the placenta in humans and mice. Gene expressions of LIF and M-CSF were investigated using quantitative RT-PCR in bovine endometrial tissues during early and mid-pregnancy (Days 16-17, 20-21, 30-36, 48-49 and 74-140) and during the estrous cycle (Days 13-14). Leukemia inhibitory factor and M-CSF genes were expressed in all samples examined. Significant differences were found between the gene expression patterns of LIF and M-CSF. Leukemia inhibitory factor expression level at Days 48-49 was the highest in caruncular endometrium, however, the large variability negated any significant differences. Leukemia inhibitory factor expression levels in intercaruncular endometrium at Days 48-49 and 74-140 of pregnancy were greater than at Days 13-14 of the estrous cycle and at other days of pregnancy. No significant change was recognized in M-CSF expression levels in caruncular endometrium. Macrophage colony stimulating factor expression level in intercaruncular endometrium at Days 74-140 was greater than those of the other samples. These results suggest that LIF and M-CSF are produced in the endometrium and may play different roles in early and mid-pregnancy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号