首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   16篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   11篇
  2014年   13篇
  2013年   19篇
  2012年   29篇
  2011年   33篇
  2010年   15篇
  2009年   13篇
  2008年   18篇
  2007年   17篇
  2006年   18篇
  2005年   12篇
  2004年   26篇
  2003年   17篇
  2002年   22篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   13篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有382条查询结果,搜索用时 406 毫秒
191.
Osteopontin (OPN) contains at least two major integrin recognition domains, Arg159-Gly-Asp161 (RGD) and Ser162-Val-Val-Tyr-Gly-Leu-Arg168 (SVVYGLR), recognized by αvβ3 and α5β1 and α4 and α9 integrins, respectively. OPN is specifically cleaved by thrombin and matrix metalloproteinase (MMP)-3 or MMP-7 at a position of Arg168/Ser169 (R/S) and Gly166/Leu167 (G/L), respectively. We in this study examined the requirement of residues within SVVYGLR for the α4 and α9 integrin recognition and how MMP-cleavage influences the integrin recognition. The residues, Val164, Tyr165, and Leu167 are critical for α4 and α9 integrin recognition in both cell adhesion and cell migration. The residue Arg168 is additionally required for α9 integrin recognition in cell adhesion and this explains why α9 integrin binds to only thrombin cleaved form of OPN. α4 integrin is able to bind to SVVYG (MMP-cleaved form of RAA OPN-N half), while α9 integrin is not, supporting the above notion that Arg168 is additionally required for α9 integrin-mediated cell adhesion. The residue Val163 is important for α4, but not for α9 integrin recognition in cell migration. Importantly, we found that the replacement of Arg168 by Ala (R168A mutant) induces the augmentation of cell migration via α4 and α9 integrins.  相似文献   
192.
Rhizobia utilize pathogen-like effector proteins during symbiosis   总被引:1,自引:0,他引:1  
A type III protein secretion system (T3SS) is an important host range determinant for the infection of legumes by Rhizobium sp. NGR234. Although a functional T3SS can have either beneficial or detrimental effects on nodule formation, only the rhizobial-specific positively acting effector proteins, NopL and NopP, have been characterized. NGR234 possesses three open reading frames potentially encoding homologues of effector proteins from pathogenic bacteria. NopJ, NopM and NopT are secreted by the T3SS of NGR234. All three can have negative effects on the interaction with legumes, but NopM and NopT also stimulate nodulation on certain plants. NopT belongs to a family of pathogenic effector proteases, typified by the avirulence protein, AvrPphB. The protease domain of NopT is required for its recognition and a subsequent strong inhibition in infection of Crotalaria juncea . In contrast, the negative effects of NopJ are relatively minor when compared with those induced by its Avr homologues. Thus NGR234 uses a mixture of rhizobial-specific and pathogen-derived effector proteins. Whereas some legumes recognize an effector as potentially pathogen-derived, leading to a block in the infection process, others perceive both the negative- and positive-acting effectors concomitantly. It is this equilibrium of effector action that leads to modulation of symbiotic development.  相似文献   
193.
194.
Neuropeptide Y (NPY) is an orexigenic peptide that plays an essential role in caloric restriction (CR)‐mediated lifespan extension. However, the mechanisms underlying the NPY‐mediated effects in CR are poorly defined. Here, we report that NPY deficiency in male mice during CR increases mortality in association with lipodystrophy. NPY?/? mice displayed a rapid decrease in body weight and fat mass, as well as increased lipolysis during CR. These alterations in fat regulation were inhibited by the lipolysis inhibitor, acipimox, a treatment associated with reduced mortality. The lipolytic/thermogenic signaling, β3‐adrenergic receptor/hormone sensitive lipase, was markedly activated in white adipose tissue of NPY?/? mice compared with that of NPY+/+ mice, and thermogenesis was controlled by NPY under negative energy balance. These results demonstrate the critical role of NPY in the regulation of lipid metabolic homeostasis and survival via control of lipolysis and thermogenesis in a state of negative energy balance.  相似文献   
195.
The effects of palmitic acid (PA), stearic acid (SA) and oleic acid (OA), and their respective CoA esters, PA-CoA, SA-CoA and OA-CoA, on the activities of cyclooxygenase (COX)-1 and -2 were examined. Ten units of purified COX-1 or -2 were preincubated with drugs in the presence of hematin (0.1 microM) and phenol (2 mM) as cofactors for 10 min at 37 degrees C, and then incubated with 100 microM arachidonic acid for 2 min at 37 degrees C. The amounts of prostaglandins formed were measured by HPLC. PA, SA and OA had no effect on the COX-1 and -2 activities, but their respective CoA esters, PA-CoA, SA-CoA and OA-CoA, suppressed COX-1 activity with no significant effect on COX-2 activity. The inhibitory effect of SA-CoA was much stronger than that of PA-CoA and OA-CoA. These results suggest that SA has the potential to inhibit COX-1 activity, but not COX-2 activity, in the form of their CoA ester.  相似文献   
196.
 The weakly electric fish Eigenmannia can detect the phase difference between a jamming signal and its own signal down to 1 s. To clarify the neuronal mechanism of this hyperaccurate detection of phase difference, we present a neural network model of the torus of the midbrain which plays an essential role in the detection of phase advances and delays. The small-cell model functions as a coincidence detector and can discriminate a time difference of more than 100 s. The torus model consists of laminae 6 and 8. The model of lamina 6 is made with multiple encoding units, each of which consists of a single linear array of small cells and a single giant cell. The encoding unit encodes the phase difference into its spatio-temporal firing pattern. The spatially random distribution of small cells in each encoding unit improves the encoding ability of phase modulation. The neurons in lamina 8 can discriminate the phase advance and delay of jamming electric organ discharges (EODs) compared with the phase of the fish's own EOD by integrating simultaneously the outputs from multiple encoding units in lamina 6. The discrimination accuracy of the feature-detection neurons is of the order of 1 s. The neuronal mechanism generating this hyperacuity arises from the spatial feature of the system that the innervation sites of small cells in different encoding units are distributed randomly and differently on the dendrites of single feature-detection neurons. The mechanism is similar to that of noise-enhanced information transmission. Received: 10 July 2000 / Accepted in revised form: 19 January 2001  相似文献   
197.
Calcium spirulan (Ca-SP) is a novel sulfated polysaccharide isolated from a blue-green alga Spirulina platensis. Ca-SP inhibits thrombin by activation of heparin cofactor II. Therefore, it could serve as an origin of anti-atherogenic medicines. Since maintenance of vascular endothelial cell monolayers is important for prevention of vascular lesions such as atherosclerosis, the effect of Ca-SP at 20 microg/ml or less on the repair of wounded bovine aortic endothelial cell monolayers in culture was investigated in the present study. When the monolayers were wounded and cultured in the presence of Ca-SP, the polysaccharide inhibited the appearance of the cells in the wounded area. The inhibition was also observed even when the repair was promoted by excess basic fibroblast growth factor, which is one of the autocrine growth factors that are involved in the endothelial cell monolayer maintenance. On the other hand, Ca-SP inhibited the cell growth and the incorporation of [3H]thymidine into the acid-insoluble fraction of proliferating endothelial cells, suggesting that Ca-SP inhibits endothelial cell proliferation. From these results, it is concluded that Ca-SP may retard the repair process of damaged vascular endothelium through inhibition of vascular endothelial cell proliferation by induction of a lower ability to respond to stimulation by endogenous basic fibroblast growth factor.  相似文献   
198.
The contribution of hypothalamic histamine neurons to the central regulation of peripheral lipid metabolism was investigated in rats using in vivo microdialysis system. A bolus infusion of L-histamine at doses of 10--10(3) nmol/rat into the third cerebral ventricle (i3vt) dose-dependently increased glycerol concentration in the perfusate from the epididymal adipose tissue. I3vt infusion of 10(2) nmol/rat thioperamide, an autoinhibitory H(3) receptor antagonist that activates histamine neurons to increase synthesis and release of neuronal histamine, convincingly mimicked histamine action in the augmented lipolysis. Intraperitoneal pretreatment with propranolol, a beta-adrenoceptor antagonist, abolished the thioperamide-induced lipolytic action. An electrophysiological study demonstrated that efferent sympathetic nerves innervating the epididymal fat were activated after the i3vt infusion of thioperamide. Hypothalamic histamine neurons thus regulate peripheral lipid metabolism through the accelerating lipolytic action by activation of sympathetic beta-adrenoceptor.  相似文献   
199.
200.
l-Carnitine is an essential component of mitochondrial fatty acid beta-oxidation and plays a pivotal role in the maturation of spermatozoa within the male reproductive tract. Epididymal plasma contains the highest levels of l-carnitine found in the human body, and initiation of sperm motility occurs in parallel to l-carnitine increase in the epididymal lumen. Using a specific carrier, epididymal epithelium secretes l-carnitine into the lumen by an active transport mechanism; however, the structure-activity relationship comprising the carnitine-permeation pathway is poorly understood. We discovered a novel carnitine transporter (CT2) specifically located in human testis. Analyzing the primary structure of CT2 revealed that it is phylogenetically located between the organic cation transporter (OCT/OCTN) and anion transporter (OAT) families. Hence, CT2 represents a novel transporter family. When expressed in Xenopus oocytes, CT2 mediates the high affinity transport of l-carnitine but does not accept mainstream OCT/OCTN cationic or OAT anionic substrates. We synthesized and tested various carnitine-related compounds and investigated the physicochemical properties of substrate recognition by semi-empirical computational chemistry. The data suggest that the quaternary ammonium cation bulkiness and relative hydrophobicity be the most important factors that trigger CT2-substrate interactions. Immunohistochemistry showed that the CT2 protein is located in the luminal membrane of epididymal epithelium and within the Sertoli cells of the testis. The identification of CT2 represents an interesting evolutionary link between OCT/OCTNs and OATs, as well as provides us with an important insight into the maturation of human spermatozoa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号