首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   8篇
  2023年   1篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   6篇
  2013年   10篇
  2012年   21篇
  2011年   24篇
  2010年   12篇
  2009年   8篇
  2008年   15篇
  2007年   15篇
  2006年   13篇
  2005年   10篇
  2004年   20篇
  2003年   12篇
  2002年   20篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1980年   1篇
  1978年   1篇
排序方式: 共有246条查询结果,搜索用时 31 毫秒
81.
82.
Macrophages are extremely heterogeneous mononuclear phagocytes widely distributed throughout the body. They play unique roles in each organ where they reside. Among macrophage subsets, red pulp macrophages (RPMs) that localize in the splenic red pulp, are critical for maintenance of blood homeostasis by actively phagocytosing injured and senescent erythrocytes and blood‐borne particulates. Recent evidence indicates that RPMs are mainly generated during embryogenesis and are maintained during adult life. Furthermore, the cell‐intrinsic and ‐extrinsic factors (namely, Spi‐C, IRF8/4, heme oxygenase‐1, and M‐CSF) that regulate the development and survival of RPMs have been identified. Although the immunological properties of RPMs have yet to be elucidated fully, pioneering studies have demonstrated that these cells are capable of inducing differentiation of regulatory T cells via expression of transforming growth factor‐β and secrete a large amount of type I interferons during parasitic infections. In this review, we describe recent advances in understanding of the functions and development of RPMs.  相似文献   
83.
VAMP7 or tetanus neurotoxin-insensitive vesicle- associated membrane protein (TI-VAMP) has been proposed to regulate apical transport in polarized epithelial cells, axonal transport in neurons and lysosomal exocytosis. To investigate the function of VAMP7 in vivo, we generated VAMP7 knockout mice. Here, we show that VAMP7 knockout mice are indistinguishable from control mice and display a similar localization of apical proteins in the kidney and small intestine and a similar localization of axonal proteins in the nervous system. Neurite outgrowth of cultured mutant hippocampal neurons was reduced in mutant neurons. However, lysosomal exocytosis was not affected in mutant fibroblasts. Our results show that VAMP7 is required in neurons to extend axons to the full extent. However, VAMP7 does not seem to be required for epithelial cell polarity and lysosomal exocytosis.  相似文献   
84.
Brown adipose tissue (BAT) can be identified by 18F‐fluorodeoxyglucose (FDG)‐positron emission tomography (PET) in adult humans. Thirteen healthy male volunteers aged 20–28 years underwent FDG‐PET after 2‐h cold exposure at 19 °C with light‐clothing and intermittently putting their legs on an ice block. When exposed to cold, 6 out of the 13 subjects showed marked FDG uptake into adipose tissue of the supraclavicular and paraspinal regions (BAT‐positive group), whereas the remaining seven showed no detectable uptake (BAT‐negative group). The BMI and body fat content were similar in the two groups. Under warm conditions at 27 °C, the energy expenditure of the BAT‐positive group estimated by indirect calorimetry was 1,446 ± 97 kcal/day, being comparable with that of the BAT‐negative group (1,434 ± 246 kcal/day). After cold exposure, the energy expenditure increased markedly by 410 ± 293 (P < 0.05) and slightly by 42 ± 114 kcal/day (P = 0.37) in the BAT‐positive and ‐negative groups, respectively. A positive correlation (P < 0.05) was found between the cold‐induced rise in energy expenditure and the BAT activity quantified from FDG uptake. After cold exposure, the skin temperature in the supraclavicular region close to BAT deposits dropped by 0.14 °C in the BAT‐positive group, whereas it dropped more markedly (P < 0.01) by 0.60 °C in the BAT‐negative group. The skin temperature drop in other regions apart from BAT deposits was similar in the two groups. These results suggest that BAT is involved in cold‐induced increases in whole‐body energy expenditure, and, thereby, the control of body temperature and adiposity in adult humans.  相似文献   
85.
Angiotensin II (Ang II) plays an important role in the maintenance of bone mass and integrity by activation of the mitogen-activated protein kinases (MAPKs) and by modulation of balance between resorption by osteoclasts and formation by osteoblasts. However, the role of Ang II in the turnover of extracellular matrix (ECM) in osteoid by osteoblasts remains unclear. Therefore, we examined the effect of Ang II on the expression of matrix metalloproteinases (MMPs), plasminogen activators (PAs), and their inhibitors [i.e., tissue inhibitors of metalloproteinases (TIMPs) and PA inhibitor-1 (PAI-1)] using osteoblastic ROS17/2.8 cells. Treatment with Ang II strikingly increased the expressions of MMP-3 and -13 and promoted cell proliferation associated with reduced alkaline phosphatase activity as well as enhanced phosphorylated expression of extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and stress-activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) in ROS17/2.8 cells. However, Ang II had no effect on the expression of MMP-2, -9, -14, urokinase-type PA, tissue-type PA, TIMP-1, -2, -3, and PAI-1 in cells. Losartan (AT1 receptor blocker) blocked Ang II-induced expression of MMP-3 and -13, whereas PD123319 (AT2 receptor blocker) did not completely block these responses. Losartan also blocked the Ang II-induced phosphorylation of ERK1/2, p38 MAPK, and SAPK/JNK. MAPK kinase 1/2 inhibitor PD98059 and JNK inhibitor SP600125 suppressed Ang II-induced expression of MMP-3 and -13. These results suggested that Ang II stimulated the degradation process that occurs during ECM turnover in osteoid by increasing the production of MMP-3 and -13 through MAPK signaling pathways via the AT1 receptor in osteoblasts. Furthermore, our findings suggest that Ang II does not influence the plasminogen/plasmin pathway in osteoblasts.  相似文献   
86.
Sorafenib (Nexavar, BAY43-9006, 1) is a second-generation, orally active multikinase inhibitor that is approved for the treatment of some cancers in patients. In this Letter, we developed [11C]1 as a novel positron emission tomography (PET) probe, and evaluated the influence of ABC transporters-mediated efflux on brain uptake using PET with [11C]1 in P-glycoprotein (P-gp)/breast cancer resistance protein (Bcrp) knockout mice versus wild-type mice. [11C]1 was synthesized by the reaction of hydrochloride of aniline 2 with [11C]phosgene ([11C]COCl2) to give isocyanate [11C]6, followed by reaction with another aniline 3. Small-animal PET study with [11C]1 indicated that the radioactivity level (AUC0-60 min, SUV × min) in the brains of P-gp/Bcrp knockout mice was about three times higher than in wild-type mice.  相似文献   
87.
The purpose of this study was to develop 4-[18F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([18F]FITM, [18F]4) as a new PET ligand for imaging metabotropic glutamate receptor subtype 1 (mGluR1). [18F]4 was synthesized by [18F]fluorination of a novel nitro precursor 3 with [18F]KF in the presence of Kryptofix 222. At the end of synthesis, 429-936 MBq (n = 8) of [18F]4 was obtained with >99% radiochemical purity and 204-559 GBq/μmol specific activity starting from 6.7 to 13.0 GBq of [18F]F. The brain distribution of [18F]4 was determined by the in vitro and ex vivo autoradiography using rat brain sections. The in vitro and in vivo specific binding of [18F]4 to mGluR1 was detected in the cerebellum, thalamus, hippocampus, and striatum. These results suggest that [18F]4 is a promising PET ligand for the in vivo evaluation of mGluR1.  相似文献   
88.
Ca(2+) signaling plays a central role in activity-dependent regulation of dendritic arborization, but key molecular mechanisms downstream of calcium elevation remain poorly understood. Here we show that the C-terminal region of the Ca(2+)/calmodulin-dependent protein kinase CLICK-III (CL3)/CaMKIgamma, a membrane-anchored CaMK, was uniquely modified by two sequential lipidification steps: prenylation followed by a kinase-activity-regulated palmitoylation. These modifications were essential for CL3 membrane anchoring and targeting into detergent-resistant lipid microdomains (or rafts) in the dendrites. We found that CL3 critically contributed to BDNF-stimulated dendritic growth. Raft insertion of CL3 specifically promoted dendritogenesis of cortical neurons by acting upstream of RacGEF STEF and Rac, both present in lipid rafts. Thus, CL3 may represent a key element in the Ca(2+)-dependent and lipid-raft-delineated switch that turns on extrinsic activity-regulated dendrite formation in developing cortical neurons.  相似文献   
89.
Brain efflux systems export such conjugated metabolites as glutathione (GSH) and glucuronate conjugates, generated by the detoxification process, from the brain and serve to protect the brain from harmful metabolites. The intracerebral injection of a radiolabeled conjugate is a useful technique to assess brain efflux systems; however, this technique is not applicable to humans. Hence, we devised a novel noninvasive approach for assessing GSH-conjugate efflux systems using positron emission tomography. Here, we investigated whether or not a designed proprobe can deliver its GSH conjugate into the brain. Radiolabeled 6-chloro-7-methylpurine (7m6CP) was designed as the proprobe, and [(14)C]7m6CP was prepared by the reaction of 6-chloropurine with [(14)C]CH(3)I as a model of [(11)C]CH(3)I. The radiochemical yield and purity of [(14)C]7m6CP were 10-20% and greater than 99%, respectively. High brain uptake (0.8% ID/g) at 1 min was observed, followed by gradual radioactivity clearance from the brain for 5-60 min after the injection of [(14)C]7m6CP into rats. Analysis of metabolites confirmed that the presence of [(14)C]7m6CP was hardly observed, and 80% of the radioactivity was identical to its GSH conjugate for 15-60 min. The brain radioactivity was single-exponentially decreased during the period of 15-60 min post-injection of [(14)C]7m6CP, and the first-order efflux rate constant of the conjugate, estimated from the slope, was 0.0253 min(-1). These results showed that (1) [(14)C]7m6CP readily entered the brain, (2) it efficiently and specifically transformed to the GSH conjugate within the brain, and (3) after [(14)C]7m6CP disappearance, the clearance of radioactivity represented the only efflux of GSH conjugate. We conclude that 7m6CP can deliver the GSH conjugate into the brain and would be useful for assessing GSH-conjugate efflux systems noninvasively.  相似文献   
90.
Neuroblastoma is a pediatric malignant tumor arising from the sympathetic nervous system. The patients with high-risk neuroblastomas frequently exhibit amplification and high expression of the MYCN gene, resulting in worse clinical outcomes. Vitamin K3 (VK3) is a synthetic VK-like compound that has been known to have antitumor activity against various types of cancers. In the present study, we have asked whether VK3 and its derivative, VK3-OH, could have the antitumor activity against neuroblastoma-derived cells. Based on our results, VK3-OH strongly inhibited cell proliferation and induced apoptotic cell death compared to VK3. Treatment of MYCN-driven neuroblastoma cells with VK3-OH potentiated tumor suppressor p53 accompanied by downregulation of anti-apoptotic Bcl-2 and Mcl-1. Interestingly, VK3-OH also suppressed the MYCN at mRNA and protein levels. Furthermore, we found downregulation of LIN28B following VK3-OH treatment in MYCN-amplified and overexpressed neuroblastoma cells. Collectively, our current findings strongly suggest that VK3-OH provides a potential therapeutic strategy for patients with MYCN-driven neuroblastomas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号