首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1363篇
  免费   77篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   17篇
  2017年   13篇
  2016年   20篇
  2015年   30篇
  2014年   32篇
  2013年   91篇
  2012年   46篇
  2011年   58篇
  2010年   35篇
  2009年   38篇
  2008年   62篇
  2007年   69篇
  2006年   62篇
  2005年   50篇
  2004年   78篇
  2003年   80篇
  2002年   65篇
  2001年   54篇
  2000年   63篇
  1999年   35篇
  1998年   28篇
  1997年   10篇
  1996年   16篇
  1995年   11篇
  1994年   13篇
  1993年   15篇
  1992年   32篇
  1991年   30篇
  1990年   17篇
  1989年   21篇
  1988年   18篇
  1987年   17篇
  1986年   16篇
  1985年   16篇
  1984年   10篇
  1983年   14篇
  1982年   13篇
  1981年   15篇
  1980年   11篇
  1979年   10篇
  1978年   11篇
  1977年   11篇
  1975年   13篇
  1973年   6篇
  1970年   8篇
  1969年   7篇
  1967年   7篇
排序方式: 共有1440条查询结果,搜索用时 218 毫秒
101.
We recently demonstrated that STAT5 can induce a variety of biological functions in mouse IL-3-dependent Ba/F3 cells; STAT5-induced expression of pim-1, p21(WAF/Cip1), and suppressor of cytokine signaling-1/STAT-induced STAT inhibitor-1/Janus kinase binding protein is responsible for induction of proliferation, differentiation, and apoptosis, respectively. In the present study, using a constitutively active STAT5A (STAT5A1*6), we show that STAT5 induces macrophage differentiation of mouse leukemic M1 cells through a distinct mechanism, autocrine production of IL-6. The supernatant of STAT5A1*6-transduced cells contained sufficient concentrations of IL-6 to induce macrophage differentiation of parental M1 cells, and STAT3 was phosphorylated on their tyrosine residues in these cells. Treatment of the cells with anti-IL-6 blocking Abs profoundly inhibited the differentiation. We also found that the STAT5A1*6 transactivated the IL-6 promoter, which was mediated by the enhanced binding of NF-kappaB p65 (RelA) to the promoter region of IL-6. These findings indicate that STAT5A cooperates with Rel/NF-kappaB to induce production of IL-6, thereby inducing macrophage differentiation of M1 cells in an autocrine manner. In summary, we have shown a novel mechanism by which STAT5 induces its pleiotropic functions. Cytokines  相似文献   
102.
The effect of jasplakinolide. an actin-polymerizing and filament-stabilizing drug, on the growth, encystation, and actin cytoskeleton of Entamoeba histolytica and Entamoeba invadens was examined. Jasplakinolide inhibited the growth of E. histolytica strain HM-1:IMSS and E. invadens strain IP-1 in a concentration-dependent manner, the latter being more resistant to the drug. The inhibitory effect of jasplakinolide on the growth of E. histolytica trophozoites was reversed by removal of the drug after exposure to 1 microM for 1 day. Encystation of E. invadens as induced in vitro was also inhibited by jasplakinolide. Trophozoites exposed to jasplakinolide in encystation medium for 1 day did not encyst after removal of the drug, whereas those exposed to the drug in growth medium for 7 days did encyst without the drug. The process of cyst maturation was unaffected by jasplakinolide. Large round structures were formed in trophozoites of both amoebae grown with jasplakinolide; these were identified as F-actin aggregates by staining with fluorescent phalloidin. Accumulation in trophozoites of both amoebae of actin aggregates was observed after culture in jasplakinolide. Also, E. invadens cysts formed from trophozoites treated with jasplakinolide contained the actin aggregate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis revealed that the jasplakinolide treatment led to an increase in the proportion of F-actin associated with formation of the aggregate. The results suggest that aggregates are formed from the cortical flow of F-actin filaments, and that these filaments would normally be depolymerized but are artificially stabilized by jasplakinolide binding.  相似文献   
103.
The fractal dimension, Df, of aggregates in a dilute BSA system with added salt was evaluated by static light scattering (SLS). A fractal structure was observed for the system with NaCl addition. The values of Df increased with increasing heating time and ionic strength. The values of Df were larger than those (Df = 1.8 or 2.1) predicted by the conventional cluster-cluster aggregation model, probably due to a "restructuring" of aggregates during the aggregation process. On the other hand, a fractal structure was not apparent for the system with added CaCl2.  相似文献   
104.
Although a few promoters that direct intestinal epithelial cell-specific expression in transgenic animals have been reported, they are not necessarily appropriate for transgenic studies in terms of activity and tissue specificity. Here, we examined the tissue specificity of transgene expression directed by the 2.8-kb promoter region of the T3(b) gene, which encodes one of the non-classical major histocompatibility complex class I molecules. The transgene was expressed exclusively in the epithelial cells of the small and large intestines at high levels. The results indicate that the T3(b) promoter is useful for directing transgene expression specifically in intestinal epithelial cells.  相似文献   
105.
The entry into mitosis is controlled by Cdc2/cyclin B, also known as maturation or M-phase promoting factor (MPF). In Xenopus egg extracts, the inhibitory phosphorylations of Cdc2 on Tyr-15 and Thr-14 are controlled by the phosphatase Cdc25 and the kinases Myt1 and Wee1. At mitosis, Cdc25 is activated and Myt1 and Wee1 are inactivated through phosphorylation by multiple kinases, including Cdc2 itself. The Cdc2-associated Suc1/Cks1 protein (p9) is also essential for entry of egg extracts into mitosis, but the molecular basis of this requirement has been unknown. We find that p9 strongly stimulates the regulatory phosphorylations of Cdc25, Myt1, and Wee1 that are carried out by the Cdc2/cyclin B complex. Overexpression of the prolyl isomerase Pin1, which binds to the hyperphosphorylated forms of Cdc25, Myt1, and Wee1 found at M-phase, is known to block the initiation of mitosis in egg extracts. We have observed that Pin1 specifically antagonizes the stimulatory effect of p9 on phosphorylation of Cdc25 by Cdc2/cyclin B. This observation could explain why overexpression of Pin1 inhibits mitotic initiation. These findings suggest that p9 promotes the entry into mitosis by facilitating phosphorylation of the key upstream regulators of Cdc2.  相似文献   
106.
Conductance and relaxations of gelatin films in glassy and rubbery states   总被引:1,自引:0,他引:1  
The dielectric constant, ′, and the dielectric loss, ″, for gelatin films were measured in the glassy and rubbery states over a frequency range from 20 Hz to 10 MHz; ′ and ″ were transformed into M* formalism (M*=1/(′−i″)=M′+iM″; i, the imaginary unit). The peak of ″ was masked probably due to dc conduction, but the peak of M″, e.g. the conductivity relaxation, for the gelatin used was observed. By fitting the M″ data to the Havriliak–Negami type equation, the relaxation time, τHN, was evaluated. The value of the activation energy, Eτ, evaluated from an Arrhenius plot of 1/τHN, agreed well with that of Eσ evaluated from the DC conductivity σ0 both in the glassy and rubbery states, indicating that the conductivity relaxation observed for the gelatin films was ascribed to ionic conduction. The value of the activation energy in the glassy state was larger than that in the rubbery state.  相似文献   
107.
Understanding the structural origins of differences in reduction potentials is crucial to understanding how various electron transfer proteins modulate their reduction potentials and how they evolve for diverse functional roles. Here, the high-resolution structures of several Clostridium pasteurianum rubredoxin (Cp Rd) variants with changes in the vicinity of the redox site are reported in order to increase this understanding. Our crystal structures of [V44L] (at 1.8 A resolution), [V44A] (1.6 A), [V44G] (2.0 A) and [V44A, G45P] (1.5 A) Rd (all in their oxidized states) show that there is a gradual decrease in the distance between Fe and the amide nitrogen of residue 44 upon reduction in the size of the side chain of residue 44; the decrease occurs from leucine to valine, alanine or glycine and is accompanied by a gradual increase in their reduction potentials. Mutation of Cp Rd at position 44 also changes the hydrogen-bond distance between the amide nitrogen of residue 44 and the sulfur of cysteine 42 in a size-dependent manner. Our results suggest that residue 44 is an important determinant of Rd reduction potential in a manner dictated by side-chain size. Along with the electric dipole moment of the 43-44 peptide bond and the 44-42 NH--S type hydrogen bond, a modulation mechanism for solvent accessibility through residue 41 might regulate the redox reaction of the Rds.  相似文献   
108.
To determine the mechanism of 2,4,6-trinitrotoluene (TNT)-induced oxidative stress involving neuronal nitric oxide synthase (nNOS), we examined alterations in enzyme activity and gene expression of nNOS by TNT, with an enzyme preparation and rat cerebellum primary neuronal cells. TNT inhibited nitric oxide formation (IC(50) = 12.4 microM) as evaluated by citrulline formation in a 20,000 g cerebellar supernatant preparation. A kinetic study revealed that TNT was a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. It was found that purified nNOS was capable of reducing TNT, with a specific activity of 3900 nmol of NADPH oxidized/mg/min, but this reaction required CaCl(2)/calmodulin (CaM). An electron spin resonance (ESR) study indicated that superoxide (O(2)(.-)) was generated during reduction of TNT by nNOS. Exposure of rat cerebellum primary neuronal cells to TNT (25 microM) caused an intracellular generation of H(2)O(2), accompanied by a significant increase in nNOS mRNA levels. These results indicate that CaM-dependent one-electron reduction of TNT is catalyzed by nNOS, leading to a reduction in NO formation and generation of H(2)O(2) derived from O(2)(.-). Thus, it is suggested that upregulation of nNOS may represent an acute adaptation to an increase in oxidative stress during exposure to TNT.  相似文献   
109.
Soybean globulins were deamidated after removing phytate using ion-exchange resins, and then hydrolyzed by digestive enzymes. The phytate-removed deamidated soybean globulins (PrDS) retained high calcium-binding ability even after the hydrolysis by digestive enzymes. PrDS and its hydrolysates enhanced calcium absorption from the small intestine when injected into the small intestine together with a calcium solution.  相似文献   
110.
Rubredoxin is a small iron-sulfur (FeS4) protein involved in oxidation–reduction reactions. The side chain of Leu41 near the iron-sulfur center has two conformations, which we suggested previously serve as a gate for a water molecule during the electron transfer process. To establish the role of residue 41 in electron transfer, an [L41A] mutant of Clostridium pasteurianum rubredoxin was constructed and crystallized in both oxidation states. Despite the lack of the gating side chain in this protein, the structure of the reduced [L41A] rubredoxin reveals a specific water molecule in the same position as observed in the reduced wild-type rubredoxin. In contrast, both the wild-type and [L41A] rubredoxins in the oxidized state do not have water molecules in this location. The reduction potential of the [L41A] variant was ~50 mV more positive than wild-type. Based on these observations, it is proposed that the site around the S of Cys9 serves as a port for an electron acceptor. Lastly, the Fe–S distances of the reduced rubredoxin are expanded, while the hydrogen bonds between S of the cysteines and the backbone amide nitrogens are shortened compared to its oxidized counterpart. This small structural perturbation in the Fe(II)/Fe(III) transition is closely related to the small energy difference which is important in an effective electron transfer agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号