首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1136篇
  免费   77篇
  1213篇
  2022年   6篇
  2021年   14篇
  2020年   6篇
  2019年   7篇
  2018年   10篇
  2017年   14篇
  2016年   18篇
  2015年   42篇
  2014年   41篇
  2013年   60篇
  2012年   71篇
  2011年   56篇
  2010年   49篇
  2009年   44篇
  2008年   69篇
  2007年   68篇
  2006年   70篇
  2005年   53篇
  2004年   77篇
  2003年   46篇
  2002年   53篇
  2001年   27篇
  2000年   36篇
  1999年   19篇
  1998年   15篇
  1997年   9篇
  1996年   12篇
  1995年   12篇
  1994年   13篇
  1993年   14篇
  1992年   12篇
  1991年   16篇
  1990年   21篇
  1989年   10篇
  1988年   13篇
  1987年   13篇
  1986年   13篇
  1985年   12篇
  1984年   8篇
  1983年   7篇
  1982年   3篇
  1981年   4篇
  1979年   8篇
  1978年   5篇
  1976年   3篇
  1971年   5篇
  1970年   5篇
  1969年   2篇
  1967年   3篇
  1966年   4篇
排序方式: 共有1213条查询结果,搜索用时 11 毫秒
211.
The replication fork temporarily stalls when encountering an obstacle on the DNA, and replication resumes after the barrier is removed. Simultaneously, activation of the replication checkpoint delays the progression of S phase and inhibits late origin firing. Camptothecin (CPT), a topoisomerase I (Top1) inhibitor, acts as a DNA replication barrier by inducing the covalent retention of Top1 on DNA. The Timeless-Tipin complex, a component of the replication fork machinery, plays a role in replication checkpoint activation and stabilization of the replication fork. However, the role of the Timeless-Tipin complex in overcoming the CPT-induced replication block remains elusive. Here, we generated viable TIPIN gene knock-out (KO) DT40 cells showing delayed S phase progression and increased cell death. TIPIN KO cells were hypersensitive to CPT. However, homologous recombination and replication checkpoint were activated normally, whereas DNA synthesis activity was markedly decreased in CPT-treated TIPIN KO cells. Proteasome-dependent degradation of chromatin-bound Top1 was induced in TIPIN KO cells upon CPT treatment, and pretreatment with aphidicolin, a DNA polymerase inhibitor, suppressed both CPT sensitivity and Top1 degradation. Taken together, our data indicate that replication forks formed without Tipin may collide at a high rate with Top1 retained on DNA by CPT treatment, leading to CPT hypersensitivity and Top1 degradation in TIPIN KO cells.  相似文献   
212.
Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonas reinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.  相似文献   
213.
High-grade serous ovarian cancer (HGSOC) is the most aggressive histological type of epithelial ovarian cancer, which is characterized by a high frequency of somatic TP53 mutations. We performed exome analyses of tumors and matched normal tissues of 34 Japanese patients with HGSOC and observed a substantial number of patients without TP53 mutation (24%, 8/34). Combined with the results of copy number variation analyses, we subdivided the 34 patients with HGSOC into subtypes designated ST1 and ST2. ST1 showed intact p53 pathway and was characterized by fewer somatic mutations and copy number alterations. In contrast, the p53 pathway was impaired in ST2, which is characterized by abundant somatic mutations and copy number alterations. Gene expression profiles combined with analyses using the Gene Ontology resource indicate the involvement of specific biological processes (mitosis and DNA helicase) that are relevant to genomic stability and cancer etiology. In particular we demonstrate the presence of a novel subtype of patients with HGSOC that is characterized by an intact p53 pathway, with limited genomic alterations and specific gene expression profiles.  相似文献   
214.
Beta-N-acetylglucosaminidase is a major glycosidase involved in several physiological processes, such as fertilization, metamorphosis, glycoconjugate degradation, and glycoprotein biosynthesis in insects. A search using the Bombyx mori cDNA database revealed the existence of two putative beta-N-acetylglucosaminidase genes. Their full-length cDNAs were cloned by rapid amplification of cDNA ends and polymerase chain reaction using specific primers, and named BmGlcNAcase1 and BmGlcNAcase2. A BLAST search revealed that BmGlcNAcase1 and BmGlcNAcase2 are homologous to a beta-subunit homolog encoded by Drosophila melanogaster HEXO2 and the Spodoptera frugiperda beta-N-acetylglucosaminidase gene respectively. The recombinant proteins of BmGlcNAcase1 and BmGlcNAcase2 without putative transmembrane domains were expressed in the yeast Pichia pastoris. Both enzymes showed broad substrate specificity, and cleaved terminal N-acetylglucosamine residues from the alpha-3 and alpha-6 branches of a biantennary N-glycan substrate, and also hydrolyzed chitotriose to chitobiose.  相似文献   
215.
A temperature-sensitive mutant, designated tsFT101, was isolated from a mouse mammary carcinoma cell line, FM3A, and given an initial characterization. In this cell line, cytokinesis was blocked at a non-permissive temperature (39 degrees C), but DNA synthesis and nuclear division proceeded normally for at least 24 h at 39 degrees C as detected respectively by autoradiography and cytofluorometric analysis. As a result, multinucleate cells accumulated at 39 degrees C (more than 95% in 36 h). When the culture was returned to a permissive temperature (33 degrees C) after 24 h of arrest at 39 degrees C, cytokinesis was resumed and there was a rapid decrease in the number of multinucleate cells. At 39 degrees C, tsFT101 cells had less F-actin than cells at 33 degrees C, indicative of the existence of an abnormality in actin polymerization in this mutant.  相似文献   
216.
217.
CYP199A2, a bacterial P450 monooxygenase from Rhodopseudomonas palustris, was previously reported to oxidize 2-naphthoic acid and 4-ethylbenzoic acid. In this study, we examined the substrate specificity and regioselectivity of CYP199A2 towards indole- and quinolinecarboxylic acids. The CYP199A2 gene was coexpressed with palustrisredoxin gene from R. palustris and putidaredoxin reductase gene from Pseudomonas putida to provide the redox partners of CYP199A2 in Escherichia coli. Following whole-cell assays, reaction products were identified by mass spectrometry and NMR spectroscopy. CYP199A2 did not exhibit any activity towards indole and indole-3-carboxylic acid, whereas this enzyme oxidized indole-2-carboxylic acid, indole-5-carboxylic acid, and indole-6-carboxylic acid. Indole-2-carboxylic acid was converted to 5- and 6-hydroxyindole-2-carboxylic acids at a ratio of 59:41. In contrast, the indole-6-carboxylic acid oxidation generated only one product, 2-indolinone-6-carboxylic acid, at a rate of 130 mol (mol P450)−1 min−1. Furthermore, CYP199A2 also oxidized quinoline-6-carboxylic acid, although this enzyme did not exhibit any activity towards quinoline and its derivatives with a carboxyl group at the C-2, C-3, or C-4 positions. The oxidation product of quinoline-6-carboxylic acid was identified to be 3-hydroxyquinoline-6-carboxylic acid, which was a novel compound. These results suggest that CYP199A2 may be a valuable biocatalyst for the regioselective oxidation of various aromatic carboxylic acids.  相似文献   
218.
S. Enomoto  M. S. Longtine    J. Berman 《Genetics》1994,136(3):757-767
We have previously shown that circular replicating plasmids that carry yeast telomere repeat sequence (TG(1-3)) tracts segregate efficiently relative to analogous plasmids lacking the TG(1-3) tract and this efficient segregation is dependent upon RAP1. While a long TG(1-3) tract is sufficient to improve plasmid segregation, the segregation efficiency of telomere plasmids (TEL-plasmids) is enhanced when the X-Telomere Associated Sequence (X-TAS) is also included on the plasmids. We now demonstrate that the enhancement of TEL-plasmid segregation by the X-TAS depends on SIR2, SIR3, SIR4 and ABF1 in trans and requires the Abflp-binding site within the X-TAS. Mutation of the Abflp-binding site within the X-TAS results in TEL-plasmids that are no longer affected by mutations in SIR2, SIR3 or SIR4, despite the fact that other Abflp-binding sites are present on the plasmid. Mutation of the ARS consensus sequence within the X-TAS converts the X-TAS from an enhancer element to a negative element that interferes with TEL-plasmid segregation in a SIR-dependent manner. Thus, telomere associated sequences interact with TG(1-3) tracts on the plasmid, suggesting that the TASs have an active role in modulating telomere function.  相似文献   
219.
Enomoto M  Park MK 《Zoological science》2004,21(10):1005-1013
Gonadotropin-releasing hormone (GnRH) is well known as the central regulator of the reproductive system through its stimulation of gonadotropin release from the pituitary. Studies on GnRH have demonstrated that GnRH has both stimulatory and inhibitory effects on cell proliferation depending on the cell type; however, the mechanisms of these effects remain to be elucidated. Against this background we used four human cell lines, TSU-Pr1, Jurkat, HHUA and DU145, and newly found that GnRH increased or decreased the colony-formation depending on the cell line. Moreover, we demonstrated that the stimulatory and inhibitory effects of GnRH exhibit distinct ligand selectivities. In order to investigate the molecular basis of these phenomena, analyses of the expression of human GnRH receptors were performed and, moreover, the effects of GnRH were analyzed under conditions in which human GnRH receptors were knocked down by the technique of RNA interference. Consequently, it was found that human type II GnRH receptor, which had been suspected of being nonfunctional because of alterations in its sequence, is involved in the effects of GnRH on cell proliferation. In this article, the influence of the autocrine activities of the cells is also reviewed, focusing on the characteristics of substances secreted from the four cell lines. Based on recent studies of GnRH and its receptors and our up-to-date findings, the evolutionary implications of GnRH action are discussed.  相似文献   
220.
Summary. The concentrations of free D- and L-amino acids were determined in the gastric juice from four groups: patients suffering from early gastric carcinoma with or without Helicobacter pylori infection, and patients without carcinoma but with peptic ulcers, duodenal ulcers or chronic gastritis with or without H. pylori infection. H. pylori is a bacterium associated with gastric inflammation and peptic ulcers and is a risk factor for stomach cancer. The highest D-amino acid ratios (free D-amino acid concentration to the total corresponding free D- and L-amino acid concentration) were 29%, 26%, 18%, 4% and 1% for proline, alanine, serine, aspartate and glutamate, respectively. The gastric juice levels of L-alanine, L-serine, L-proline, L-glutamate and D-alanine in the samples obtained from subjects bearing early gastric carcinoma and H. pylori were significantly higher than in the samples from the other three groups. Except for D-alanine, there was no correlation between the D-amino acid concentrations and presence of carcinoma or H. pylori.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号