首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   6篇
  97篇
  2023年   1篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1973年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有97条查询结果,搜索用时 0 毫秒
31.
Akazara scallop striated muscle tropomyosin mutants without a fused amino acid (nf-Tm), and with Ala- (A-Tm) or Asp-Ala- (DA-Tm) fused at the N-terminus were expressed in Escherichia coli cells. Among them, nf-Tm alone has an initial methionine. The native Akazara scallop tropomyosin and DA-Tm showed similar alpha-helix contents and intrinsic viscosity, but nf-Tm and A-Tm exhibited lower values than those of the native tropomyosin. According to the relative viscosity, all the expressed tropomyosins appear to have lost head-to-tail polymerization ability. Though nf-Tm has extremely low actin-binding ability, the ability was almost completely recovered with a two amino acid fusion but incompletely with a one amino acid fusion. On the other hand, an amino acid fusion, irrespective of the number, seemed to inhibit the Mg-ATPase activity of actomyosin. However, the bacterially expressed tropomyosins together with Akazara scallop troponin do not confer the full Ca(2+)-regulation ability of Mg-ATPase activity of actomyosin. These results support that N-terminal blocking probably by an acetyl group of Akazara scallop tropomyosin plays an important role not only in head-to-tail polymerization and actin-binding, as known for vertebrate tropomyosin, but also in maintaining the secondary or higher structure and Ca(2+)-regulation together with troponin.  相似文献   
32.
Troponin C (TnC) is the Ca(2+)-binding regulatory protein of the troponin complex in muscle tissue. Vertebrate fast skeletal muscle TnCs bind four Ca(2+), while Akazara scallop (Chlamys nipponensis akazara) striated adductor muscle TnC binds only one Ca(2+) at site IV, because all the other EF-hand motifs are short of critical residues for the coordination of Ca(2+). Fourier transform infrared (FTIR) spectroscopy was applied to study coordination structure of Mg(2+) bound in a mutant Akazara scallop TnC (E142Q) in D(2)O solution. The result showed that the side-chain COO(-) groups of Asp 131 and Asp 133 in the Ca(2+)-binding site of E142Q bind to Mg(2+) in the pseudo-bridging mode. Mg(2+) titration experiments for E142Q and the wild-type of Akazara scallop TnC were performed by monitoring the band at about 1600 cm(-1), which is due to the pseudo-bridging Asp COO(-) groups. As a result, the binding constants of them for Mg(2+) were the same value (about 6 mM). Therefore, it was concluded that the side-chain COO(-) group of Glu 142 of the wild type has no relation to the Mg(2+) ligation. The effect of Mg(2+) binding in E142Q was also investigated by CD and fluorescence spectroscopy. The on-off mechanism of the activation of Akazara scallop TnC is discussed on the basis of the coordination structures of Mg(2+) as well as Ca(2+).  相似文献   
33.
Design and synthesis of metabolically stabilized inhibitors of TNF-alpha production, which could be new drug candidates, are reported. Conformational analysis of an active diastereoisomer was performed based on biological evaluations of the conformationally fixed indane derivatives 17 and 18. Structure-activity relationships (SARs) based on biological evaluations of the optically active derivatives are also discussed. Full details including chemistry are reported.  相似文献   
34.
The discovery of 2-acylamino-2-phenylethyl disodium phosphates and as structurally novel inhibitors of TNF-alpha production is reported. Structure-activity relationships (SARs) are also discussed.  相似文献   
35.
Two cytosolic carbonic anhydrase isozymes (CA-II and CA-III) were studied by immunohistochemistry in bovine parotid glands during fetal development. In a 3-month-old fetus of crown-rump length (CRL) 17 cm, the expression of CA-II in undifferentiated epithelial cells was observed, whereas immunostaining for CA-III remained negative. At 26 cm CRL (4–5 months old), weak expression of CA-III in large ductal epithelial cells was noted. The accumulation of secreted granules in primary acinar cells was initially observed at this stage. In a newborn calf, anti-CA-II reactivity almost disappeared from most duct segments. The time-dependent expression and distribution of the isozymes in parotid glands may reflect different biological functions of these structurally closely related isozymes. Bovine parotid acinar cells of fetuses would thus appear to possess all the cellular structures and immunohistochemical properties at 4 and 5 months of gestation. CA-II subsequently disappeared from duct segments and nearly all acinar cells in adults were present at or just after birth.  相似文献   
36.

Background

In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure.

Results

The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits.

Conclusions

We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.
  相似文献   
37.
Scallop troponin C (TnC) binds only one Ca(2+)/mol and the single Ca(2+)-binding site has been suggested to be site IV on the basis of the primary structure [K. Nishita, H. Tanaka, and T. Ojima (1994) J. Biol. Chem. 269, 3464-3468; T. Ojima, H. Tanaka, and K. Nishita (1994) Arch. Biochem. Biophys. 311, 272-276]. In the present study, the functional role of Ca(2+)-binding site IV of akazara scallop (Chlamys nipponensis akazara) TnC in Ca(2+)-regulation was investigated using a site-directed mutant with an inactivated site IV (TnC-ZEQ), N- and C-terminal half molecule mutants (TnC(N) and TnC(C)), and wild-type TnC (TnC(W)). Equilibrium dialysis using (45)Ca(2+) demonstrated that TnC(W) and TnC(C) bind 0.6-0.8 mol of Ca(2+)/mol, but that TnC-ZEQ and TnC(N) bind virtually no Ca(2+). The UV difference spectra of TnC(W) and TnC(C) showed bands at around 280-290 nm due to the perturbation of Tyr and Trp upon Ca(2+)-binding, while TnC-ZEQ and TnC(N) did not show these bands. In addition, TnC(W) and TnC(C) showed retardation of elution from Sephacryl S-200 upon the addition of 1 mM CaCl(2), unlike TnC-ZEQ and TnC(N). These results indicate that Ca(2+) binds only to site IV and that Ca(2+)-binding causes structural changes in both the whole TnC molecule and the C-terminal half molecule. In addition, TnC(W), TnC-ZEQ, and TnC(C), but not TnC(N), were shown to form soluble complexes with scallop TnI at physiological ionic strength. On the other hand, the Mg-ATPase activity of reconstituted rabbit actomyosin in the presence of scallop tropomyosin was inhibited by scallop TnI and recovered by the addition of an equimolar amount of TnC(W), TnC-ZEQ, or TnC(C), but not TnC(N). These results imply that the site responsible for the association with TnI is located in the C-terminal half domain of TnC. Ternary complex constructed from scallop TnT, TnI, and TnC(W) conferred Ca(2+)-sensitivity to the Mg-ATPase of rabbit actomyosin to the same extent as native troponin, but the TnC(N)-TnT-TnI and TnC-ZEQ-TnT-TnI complexes conferred no Ca(2+)-sensitivity, while the TnC(C)-TnT-TnI complex conferred weak Ca(2+)-sensitivity. Thus, the major functions of scallop TnC, such as Ca(2+)-binding and interaction with TnI, are located in the C-terminal domain, however, the full Ca(2+)-regulatory function requires the presence of the N-terminal domain.  相似文献   
38.
Previous studies have demonstrated that the Hedgehog (Hh) signaling pathway plays a critical role in the development and patterning of many endodermally derived tissues. We have investigated the role of Sonic hedgehog (Shh) in formation of the prostate gland by examining the urogenital phenotype of Shh mutant fetuses. Consistent with earlier work reporting an essential role for Shh in prostate induction, we have found that Shh mutant fetuses display abnormal urogenital development and fail to form prostate buds. Unexpectedly, however, we have discovered that this prostate defect could be rescued by three different methods: renal grafting, explant culture in the presence of androgens, and administration of dihydrotestosterone (DHT) to pregnant mice, indicating that the prostate defect in Shh mutants is due to insufficient levels of androgens. Furthermore, we find that the inhibition of Hh pathway signaling by treatment with cyclopamine does not block prostate formation in explant culture, but instead produces morphological defects consistent with a role for Hh signaling in ductal patterning. Taken together, our studies indicate that the initial organogenesis of the prostate proceeds independently of Shh, but that Shh or other Hh ligands may play a role in subsequent events that pattern the prostate.  相似文献   
39.
To investigate the astrocyte response to hypoxia/reoxygenation, as a model relevant to the pathogenesis of ischemic injury, cultured rat astrocytes were exposed to hypoxia. On restoration of astrocytes to normoxia, there was a dramatic increase in protein synthesis within 3 h, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of metabolically labeled astrocyte lysates showed multiple induced bands on fluorograms. Levels of cellular ATP declined during the first 3 h of reoxygenation and the concentration of AMP increased to ± 3.6 nmol/mg of protein within 1 h of reoxygenation. Reoxygenated astrocytes generated oxygen free radicals early after replacement into ambient air, and addition of diphenyliodonium, an NADPH oxidase inhibitor, diminished the generation of free radicals as well as the induction of several bands on fluorogram. Although addition of cycloheximide on reoxygenation resulted in inhibition of both astrocyte protein synthesis and accumulation of cellular AMP, it caused cell death within 6 h, suggesting the importance of protein synthesis in adaptation of hypoxic astrocytes to reoxygenation. Potential physiologic significance of biosynthetic products of astrocytes in hypoxia/reoxygenation was suggested by the recovery of glutamate uptake. These results indicate that the astrocyte response to hypoxia/reoxygenation includes generation of oxygen free radicals and de novo synthesis of products that influence cell viability and function in ischemia.  相似文献   
40.
Two different hybrid myosins were obtained by combining "desensitized" myosin (DM) of Akazara scallop striated adductor with rabbit skeletal DTNB-light chains (DTNB-LC) and with chicken gizzard regulatory light chains (GR-LC). Using the two hybrid myosins, the following were found: (a) DTNB-LC has an inhibitory effect on the Mg-ATPase activities of Akazara DM and acto-DM both in the absence of calcium and in its presence. (b) DTNB-LC also has an enhancing effect on the superprecipitation activity of acto-DM. (c) The Mg-ATPase activities of DM and acto-DM are made sensitive to calcium by GR-LC, regardless of whether GR-LC is phosphorylated or unphosphorylated. (d) However, the Mg-ATPase activity of acto-myosin hybridized with phosphorylated GR-LC is definitely higher than that of acto-myosin hybridized with unphosphorylated GR-LC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号