首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   891篇
  免费   80篇
  2023年   3篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   3篇
  2018年   14篇
  2017年   3篇
  2016年   14篇
  2015年   33篇
  2014年   27篇
  2013年   40篇
  2012年   49篇
  2011年   48篇
  2010年   36篇
  2009年   22篇
  2008年   43篇
  2007年   59篇
  2006年   47篇
  2005年   45篇
  2004年   56篇
  2003年   53篇
  2002年   44篇
  2001年   38篇
  2000年   27篇
  1999年   31篇
  1998年   17篇
  1997年   11篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   13篇
  1992年   23篇
  1991年   17篇
  1990年   25篇
  1989年   12篇
  1988年   15篇
  1987年   14篇
  1986年   11篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1978年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1970年   3篇
  1966年   3篇
  1964年   1篇
排序方式: 共有971条查询结果,搜索用时 953 毫秒
81.
Responses of immunocompetent cells to tooth replantation during the regeneration process of the dental pulp in rat molars were investigated by immunocytochemistry using antibodies to class II major histocompatibility complex (MHC) molecules (OX6 antibody), monocyte/macrophage lineage cells (ED1 antibody) and protein gene product 9.5 (PGP 9.5), as well as by histochemical reaction for periodic acid-Schiff (PAS). Tooth replantation caused an increase in both the number of OX6- and ED1-positive cells and their immunointensity in the replanted pulp, but almost all PGP 9.5-immunoreactive nerves diminished in the initial stages. By postoperative day 3, many OX6- and ED -immunopositive cells had accumulated along the pulp-dentin border to extend their cytoplasmic processes into the dentinal tubules in successful cases. Once reparative dentin formation had begun after postoperative day 7, OX6- and ED1-immmunopositive cells became scattered in the odontoblast layer, while reinnervation was found in the coronal pulp. The temporal appearance of these immunocompetent cells at the pulp-dentin border suggests their participation in odontoblast differentiation as well as in initial defense reactions during the pulpal regeneration process. On postoperative day 14, the replanted pulp showed three regeneration patterns: (1) reparative dentin, (2) bone-like tissue formation, and (3) an intermediate form between these. In all cases, PAS-reactive cells such as polymorphonuclear leukocytes (PML) and mesenchymal cells occurred in the pulp space. However, the prolonged stagnation of inflammatory cells was also discernible in the latter two cases. Thus, the findings on PAS reaction suggest that the migration of the dental follicle-derived cells into the pulp space and the subsequent total death of the proper pulpal cells are decisive factors for eliciting bone-like tissue formation in the replanted pulp.  相似文献   
82.
It has been reported that mammalian cells incubated with excess nitric oxide (NO) accumulate p53 protein but concomitantly this p53 loses its capacity for binding to its DNA consensus sequence. As nitration of tyrosine residues in various proteins has been shown to inhibit their functions, we examined whether NO nitrates tyrosine residues in p53 protein. MCF-7 cells expressing wild-type p53 were incubated with S-nitrosoglutathione for 4 h and cellular extracts were immunoprecipitated with an anti-p53 antibody. Western blot analyses of immunoprecipitates for p53 or for nitrotyrosine revealed low levels of nitrotyrosine in p53 from untreated cells. Incubation with 2 mM S-nitrosoglutathione induced a significant increase in the nitrotyrosine level in p53 protein compared to nontreated cells. These results suggest that excess NO produced in inflamed tissues could nitrate p53 protein, playing a role in carcinogenesis by impairing functions of this tumor-suppressor protein.  相似文献   
83.
Glutamine production with bacterial glutamine synthetase (GS) and the sugar-fermenting system of baker’s yeast for ATP regeneration was investigated by determining the product yield obtained with the energy source for ATP regeneration (i.e., glucose) for yeast fermentation. Fructose 1,6-bisphosphate was accumulated temporarily prior to the formation of glutamine in mixtures which consisted of dried yeast cells, GS, their substrate (glucose and glutamate and ammonia), inorganic phosphate, and cofactors. By an increase in the amounts of GS and inorganic phosphate, the amounts of glutamine formed increased to 19 to 54 g/liter, with a yield increase of 69 to 72% based on the energy source (glucose) for ATP regeneration. The analyses of sugar fermentation of the yeast in the glutamine-producing mixtures suggested that the apparent hydrolysis of ATP by a futile cycle(s) at the early stage of glycolysis in the yeast cells reduces the efficiency of ATP utilization. Inorganic phosphate inhibits phosphatase(s) and thus improves glutamine yield. However, the analyses of GS activity in the glutamine-producing mixtures suggested that the higher concentration of inorganic phosphate as well as the limited amount of ATP-ADP caused the low reactivity of GS in the glutamine-producing mixtures. A result suggestive of improved glutamine yield under the conditions with lower concentrations of inorganic phosphate was obtained by using a yeast mutant strain that had low assimilating ability for glycerol and ethanol. In the mutant, the activity of the enzymes involved in gluconeogenesis, especially fructose 1,6-bisphosphatase, was lower than that in the wild-type strain.  相似文献   
84.
Chitosan-degrading activities induced by glucosamine (GlcN) or N-acetylglucosamine (GlcNAc) were found in a culture filtrate of Trichoderma reesei PC-3-7. One of the chitosan-degrading enzymes was purified to homogeneity by precipitation with ammonium sulfate followed by anion-exchange and hydrophobic-interaction chromatographies. The enzyme was monomeric, and its molecular mass was 93 kDa. The optimum pH and temperature of the enzyme were 4.0 and 50 degrees C, respectively. The activity was stable in the pH range 6.0 to 9.0 and at a temperature below 50 degrees C. Reaction product analysis from the viscosimetric assay and thin-layer chromatography and H nuclear magnetic resonance spectroscopy clearly indicated that the enzyme was an exo-type chitosanase, exo-beta-d-glucosaminidase, that releases GlcN from the nonreducing end of the chitosan chain. H nuclear magnetic resonance spectroscopy also showed that the exo-beta-d-glucosaminidase produced a beta-form of GlcN, demonstrating that the enzyme is a retaining glycanase. Time-dependent liberation of the reducing sugar from partially acetylated chitosan with exo-beta-d-glucosaminidase and the partially purified exo-beta-d-N-acetylglucosaminidase from T. reesei PC-3-7 suggested that the exo-beta-d-glucosaminidase cleaves the glycosidic link of either GlcN-beta(1-->4)-GlcN or GlcN-beta(1-->4)-GlcNAc.  相似文献   
85.
Glutamine production with bacterial glutamine synthetase (GS) and the sugar-fermenting system of baker’s yeast for ATP regeneration was investigated by determining the product yield obtained with the energy source for ATP regeneration (i.e., glucose) for yeast fermentation. Fructose 1,6-bisphosphate was accumulated temporarily prior to the formation of glutamine in mixtures which consisted of dried yeast cells, GS, their substrate (glucose and glutamate and ammonia), inorganic phosphate, and cofactors. By an increase in the amounts of GS and inorganic phosphate, the amounts of glutamine formed increased to 19 to 54 g/liter, with a yield increase of 69 to 72% based on the energy source (glucose) for ATP regeneration. The analyses of sugar fermentation of the yeast in the glutamine-producing mixtures suggested that the apparent hydrolysis of ATP by a futile cycle(s) at the early stage of glycolysis in the yeast cells reduces the efficiency of ATP utilization. Inorganic phosphate inhibits phosphatase(s) and thus improves glutamine yield. However, the analyses of GS activity in the glutamine-producing mixtures suggested that the higher concentration of inorganic phosphate as well as the limited amount of ATP-ADP caused the low reactivity of GS in the glutamine-producing mixtures. A result suggestive of improved glutamine yield under the conditions with lower concentrations of inorganic phosphate was obtained by using a yeast mutant strain that had low assimilating ability for glycerol and ethanol. In the mutant, the activity of the enzymes involved in gluconeogenesis, especially fructose 1,6-bisphosphatase, was lower than that in the wild-type strain.Glutamine is one of the most important compounds in nitrogen metabolism; it is not only a constituent of proteins but is also a donor of the amino (amido) moiety in the biosynthesis of other amino acids, purines, pyrimidines, pyridine coenzymes, and complex carbohydrates. Glutamine is also used in the treatment of gastric ulcers and has been produced commercially by direct fermentation with certain bacteria (610).In recent years, enzymatic synthesis has come to rival direct fermentation as a means of producing amino acids. In the case of glutamine, however, the need for a stoichiometric supply of ATP for the endoergonic reaction of glutamine synthetase (GS) precludes the development of an economically valuable method, unless ATP can be regenerated and recycled.Processes for the production of various substances using dried yeast cells as an enzyme source were established by Tochikura and colleagues (2, 4, 16, 1820). The processes are driven by the chemical energy of ATP released by the alcoholic fermentation by the yeast, which has been wasted in alcoholic brewing (17). Tochikura and colleagues also designed a process in which the yeast fermentation of sugar is combined with an endoergonic reaction catalyzed by an enzyme from a different microorganism (3). The results suggest that the process offers the possibility of producing many compounds at a high yield by using various biosynthetic reactions and high concentrations of substrates. Tochikura et al. introduced the general idea of coupled fermentation with energy transfer for the process; its principle is indicated in Fig. Fig.1,1, with glutamine production as an example. Open in a separate windowFIG. 1Scheme of glutamine production by the coupled fermentation with energy transfer method. ∗1, glycolytic pathway is abridged. ∗2, inorganic phosphate (Pi) is recycled.In the process of coupled fermentation with energy transfer, a catalytic amount of ATP is regenerated with the energy of sugar fermented by yeast, in the form of baker’s yeast (4, 16, 18, 19, 23). The energy-utilizing system for the synthesis can involve the enzyme(s) of yeast itself or those of other organisms. It should be noted that, from another point of view, the use of the energy-utilizing system results in ADP regeneration to complete the fermentation of glucose, and that, if there is no ADP regeneration, the yeast fermentation of sugar can proceed only as follows, in the presence of inorganic phosphate (the Harden-Young effect of inorganic phosphate [1]), 2 · glucose + 2 · inorganic phosphate → fructose 1,6-bisphosphate (FBP) + 2 · C2H5OH + 2 · CO2 (Harden-Young equation), where ADP regeneration for the fermentation of 1 mol of glucose is carried out by the phosphorylation of another mole of glucose to FBP.We previously reported glutamine production, obtained by employing a combination of baker’s yeast cells and GS from Gluconobacter suboxydans, as the first application of the coupled fermentation with energy transfer method for the production of a nonphosphorylated compound (12, 13). In addition, we achieved high-yield glutamine production by using the Corynebacterium glutamicum (Micrococcus glutamicus) enzyme and larger amounts of the substrates (15). The maximum amounts of glutamine formed (23 to 25 g/liter) and the yield based on glutamate (50 to 100%) were to some extent satisfactory, but the yield based on the energy source (glucose) for ATP regeneration was not satisfactory (about 40% of the theoretical value; 2 mol of glutamine can be formed when 1 mol of glucose is consumed).In the present study, we examined the characteristics of glutamine production regarding product yield based on the energy source for ATP regeneration and regarding the reactivity of GS during glutamine production, which is closely related to the product yield. The results of preliminary attempts to improve glutamine production are also described. In these experiments, a yeast mutant which has a low assimilating ability for glycerol and/or ethanol was used.  相似文献   
86.
87.
BACKGROUND: Macrophage migration inhibitory factor (MIF) was recently rediscovered as a cytokine, pituitary hormone, and glucocorticoid-induced immunomodulator. MIF is constitutively expressed in various cells and enhances production of inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1, and interferon gamma. Recently, it was reported that MIF mRNA was overexpressed in prostatic tumors, which suggests that MIF is a protein involved in tumor cell growth beyond inflammatory and immune responses. MATERIALS AND METHODS: We examined the expression of MIF in the murine colon carcinoma cell line colon 26 by Western and Northern blot analyses and immunohistochemistry. Next, we investigated the effects of transforming growth factor (TGF) beta, basic fibroblast growth factor (b-FGF), and platelet-derived growth factor (PDGF) on the expression of MIF mRNA. Furthermore, we examined whether MIF is involved in tumor cell proliferation, using an MIF anti-sense plasmid transfection technique. RESULTS: We demonstrated that MIF protein and its mRNA were highly expressed in colon 26 cells, using Western and Northern blot analyses, respectively. By immunohistochemical analysis, we found that MIF was localized largely in the cytoplasm of the tumor cells. In response to TGF-beta, b-FGF, and PDGF, MIF mRNA expression was significantly up-regulated. Following this, we transfected the cells with an anti-sense MIF plasmid, which revealed that this treatment induced significant suppression of cell proliferation. CONCLUSION: Although MIF plays multifunctional roles in a broad spectrum of pathophysiological states, little has been done to investigate the role of this protein in association with tumor growth. The current results suggest the possibility that MIF induces tumor cell growth in concert with other growth factors, which encouraged us to investigate a novel approach for tumor therapy using an anti-MIF antibody and an MIF anti-sense plasmid transfection technique.  相似文献   
88.

Background

Low-dose aspirin (LDA) frequently causes small bowel injury. While some drugs have been reported to be effective in treating LDA-induced small intestinal damage, most studies did not exclude patients with mild damage thought to be clinically insignificant.

Aim

We conducted a multicenter, randomized, double-blind, placebo-controlled trial to assess the efficacy of a high dose of rebamipide, a gastroprotective drug, for LDA-induced moderate-to-severe enteropathy.

Methods

We enrolled patients who received 100 mg of enteric-coated aspirin daily for more than 3 months and were found to have more than 3 mucosal breaks (i.e., erosions or ulcers) in the small intestine by capsule endoscopy. Eligible patients were assigned to receive either rebamipide 300 mg (triple dose) 3 times daily or placebo for 8 weeks in a 2:1 ratio. Capsule endoscopy was then repeated. The primary endpoint was the change in the number of mucosal breaks from baseline to 8 weeks. Secondary endpoints included the complete healing of mucosal breaks at 8 weeks and the change in Lewis score (an endoscopic score assessing damage severity) from baseline to 8 weeks.

Results

The study was completed by 38 patients (rebamipide group: n = 25, placebo group: n = 13). After 8 weeks of treatment, rebamipide, but not placebo, significantly decreased the number of mucosal breaks (p = 0.046). While the difference was not significant (p = 0.13), the rate of complete mucosal break healing in the rebamipide group (32%, 8 of 25) tended to be higher than that in the placebo group (7.7%, 1 of 13). Rebamipide treatment significantly improved intestinal damage severity as assessed by the Lewis score (p = 0.02), whereas placebo did not. The triple dose of rebamipide was well tolerated.

Conclusions

High-dose rebamipide is effective for the treatment of LDA-induced moderate-to-severe enteropathy.

Trial Registration

UMIN Clinical Trials Registry UMIN000003463  相似文献   
89.
Recent studies in rodents suggest that maternal immune activation (MIA) by viral infection is associated with schizophrenia and autism in offspring. Although maternal IL-6 is though t to be a possible mediator relating MIA induced these neuropsychiatric disorders, the mechanism remains to be elucidated. Previously, we reported that the maternal leukemia inhibitory factor (LIF)–placental ACTH–fetal LIF signaling relay pathway (maternal–fetal LIF signal relay) promotes neurogenesis of fetal cerebrum in rats. Here we report that the maternal–fetal LIF signal relay in mice is suppressed by injection of polyriboinosinic-polyribocytidylic acid into dams, which induces MIA at 12.5 days post-coitum. Maternal IL-6 levels and gene expression of placental suppressor of cytokine signaling 3 (Socs3) increased according to the severity of MIA and gene expression of placental Socs3 correlated with maternal IL-6 levels. Furthermore, we show that MIA causes reduction of LIF level in the fetal cerebrospinal fluid, resulting in the decreased neurogenesis in the cerebrum. These findings suggest that maternal IL-6 interferes the maternal–fetal LIF signal relay by inducing SOCS3 in the placenta and leads to decreased neurogenesis.  相似文献   
90.
In this study, we showed that adrenocorticotropic hormone (ACTH) promoted erythroblast differentiation and increased the enucleation ratio of erythroblasts. Because ACTH was contained in hematopoietic medium as contamination, the ratio decreased by the addition of anti-ACTH antibody (Ab). Addition of neutralizing Abs (nAbs) for melanocortin receptors (MCRs) caused erythroblast accumulation at specific stages, i.e., the addition of anti-MC2R nAb led to erythroblast accumulation at the basophilic stage (baso-E), the addition of anti-MC1R nAb caused accumulation at the polychromatic stage (poly-E), and the addition of anti-MC5R nAb caused accumulation at the orthochromatic stage (ortho-E). During erythroblast differentiation, ERK, STAT5, and AKT were consecutively phosphorylated by erythropoietin (EPO). ERK, STAT5, and AKT phosphorylation was inhibited by blocking MC2R, MC1R, and MC5R, respectively. Finally, the phosphorylation of myosin light chain 2, which is essential for the formation of contractile actomyosin rings, was inhibited by anti-MC5R nAb. Taken together, our study suggests that MC2R and MC1R signals are consecutively required for the regulation of EPO signal transduction in erythroblast differentiation, and that MC5R signal transduction is required to induce enucleation. Thus, melanocortin induces proliferation and differentiation at baso-E, and polarization and formation of an actomyosin contractile ring at ortho-E are required for enucleation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号