首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649篇
  免费   64篇
  2023年   3篇
  2022年   2篇
  2021年   10篇
  2020年   5篇
  2019年   4篇
  2018年   14篇
  2017年   5篇
  2016年   17篇
  2015年   23篇
  2014年   19篇
  2013年   36篇
  2012年   45篇
  2011年   37篇
  2010年   24篇
  2009年   26篇
  2008年   30篇
  2007年   43篇
  2006年   42篇
  2005年   38篇
  2004年   41篇
  2003年   33篇
  2002年   34篇
  2001年   21篇
  2000年   18篇
  1999年   12篇
  1998年   8篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   3篇
  1993年   9篇
  1992年   7篇
  1991年   15篇
  1990年   5篇
  1989年   8篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1978年   2篇
  1975年   7篇
  1973年   3篇
  1971年   3篇
  1970年   3篇
  1969年   4篇
  1967年   1篇
  1966年   2篇
排序方式: 共有713条查询结果,搜索用时 15 毫秒
121.

Key message

Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine.

Abstract

Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.
  相似文献   
122.
123.
A proteomic approach was used to identify 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) protein targets in human neuroblastoma SH-SY5Y cells. By using biotinylated 15d-PGJ2, beta-actin was found as the major adducted protein; at least 12 proteins were also identified as minor biotin-positive spots, falling in different functional classes, including glycolytic enzymes (enolase and lactate dehydrogenase), redox enzymes (biliverdin reductase), and a eukaryotic regulatory protein (14-3-3gamma). 15d-PGJ2 induced marked morphological changes in the actin filament network and in particular promoted F-actin depolymerization as confirmed by Western blot analysis. By using a mass spectrometric approach, we found that 15d-PGJ2 reacts with isolated G-actin in a 1:1 stoichiometric ratio and selectively binds the Cys374 site through a Michael adduction mechanism. Computational studies showed that the covalent binding of 15d-PGJ2 induces a significant unfolding of actin structure and in particular that 15d-PGJ2 distorts the actin subdomains 2 and 4, which define the nucleotide binding sites impeding the nucleotide exchange. The functional effect of 15d-PGJ2 on G-actin was studied by polymerization measurement: in the presence of 15d-PGJ2, a lower amount of F-actin forms, as followed by the increase in pyrenyl-actin fluorescence intensity, as the major effect of increasing 15d-PGJ2 concentrations occurs on the maximum extent of actin polymerization, whereas it is negligible on the initial rate of reaction. In summary, the results here reported give an insight into the role of 15d-PGJ2 as a cytotoxic compound in neuronal cell dysfunction. Actin is the main protein cellular target of 15d-PGJ2, which specifically binds through a Michael adduction to Cys374, leading to a protein conformational change that can explain the disruption of the actin cytoskeleton, F-actin depolymerization, and impairment of G-actin polymerization.  相似文献   
124.
125.
The kinetics of type I procollagen synthesis in a human osteosarcoma cell line, MG 63, were investigated after treatment with 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3), a hormonal inducer of phenotypic differentiation. Pulse label and chase experiments demonstrated greatly enhanced production and more rapid reduction of intracellular procollagen molecules in the 1,25-(OH)2 D3–treated cells as compared to the nontreated case. After a chase for 1 h, labeled procollagen was reduced by nine-tenths in 1,25-(OH)2 D3–treated cells, while half of the radioactivity still remained in nontreated cells. The expression rate of type I collagen, which was examined by pulse label experiment, was elevated in association with an increase in the mRNA coding for the type I collagen α1 chain by 1,25-(OH)2 D3 treatment. However, the amount of intracellular procollagen present after 4 h continuous labeling was almost the same, independent of the 1,25-(OH)2 D3 treatment. Thus, we conclude that strage of the molecule was not affected. The results therefore suggest an increase in both the synthesis and secretion of type I collagen. The 1,25-(OH)2 D3 treatment was also found to induce the α subunit of prolyl 4-hydroxylase and to be associated with an elevated level of hydroxyproline in the procollagen. Moreover, gelatinase B–resistant procollagen molecules, indicative of intracellular procollagen molecules in the stable triple helical form, were detected only in the 1,25-(OH)2 D3–treated cells. These data suggest more efficient proline hydroxylation is involved in rapid secretion of procollagen after hormone administration. The present evidence points to posttranslational control of procollagen synthesis. J. Cell. Biochem. 65:542–549. © 1997 Wiley-Liss Inc.  相似文献   
126.
127.
128.
Polyamines: essential factors for growth and survival   总被引:7,自引:0,他引:7  
Kusano T  Berberich T  Tateda C  Takahashi Y 《Planta》2008,228(3):367-381
Polyamines are low molecular weight, aliphatic polycations found in the cells of all living organisms. Due to their positive charges, polyamines bind to macromolecules such as DNA, RNA, and proteins. They are involved in diverse processes, including regulation of gene expression, translation, cell proliferation, modulation of cell signalling, and membrane stabilization. They also modulate the activities of certain sets of ion channels. Because of these multifaceted functions, the homeostasis of polyamines is crucial and is ensured through regulation of biosynthesis, catabolism, and transport. Through isolation of the genes involved in plant polyamine biosynthesis and loss-of-function experiments on the corresponding genes, their essentiality for growth is reconfirmed. Polyamines are also involved in stress responses and diseases in plants, indicating their importance for plant survival. This review summarizes the recent advances in polyamine research in the field of plant science compared with the knowledge obtained in microorganisms and animal systems.  相似文献   
129.
The beta-substituted alanine (Ala) synthase (Bsas) family in the large superfamily of pyridoxal 5'-phosphate-dependent enzymes comprises cysteine (Cys) synthase (CSase) [O-acetyl-serine (thiol) lyase] and beta-cyano-Ala synthase (CASase) in plants. Nine genomic sequences encode putative Bsas proteins in Arabidopsis thaliana. The physiological roles of these Bsas isoforms in vivo were investigated by the characterization of T-DNA insertion mutants. Analyses of gene expression, activities of CSase and CASase, and levels of Cys and glutathione in the bsas mutants indicated that cytosolic Bsas1;1, plastidic Bsas2;1, and mitochondrial Bsas2;2 play major roles in Cys biosynthesis. Cytosolic Bsas1;1 has the most dominant contribution both in leaf and root, and mitochondrial Bsas2;2 plays a significant role in root. Mitochondrial Bsas3;1 is a genuine CASase. Nontargeted metabolome analyses of knockout mutants were carried out by a combination of gas chromatography time-of-flight mass spectrometry and capillary electrophoresis time-of-flight mass spectrometry. The level of gamma-glutamyl-beta-cyano-Ala decreased in the mutant bsas3;1, indicating the crucial role of Bsas3;1 in beta-cyano-Ala metabolism in vivo.  相似文献   
130.
Peptide tags containing tyrosines (Y-tag) were introduced at the C-terminus of a hyperthermophilic enzyme, alkaline phosphatase from Pyrococcus furiosus (PfuAP). Immobilization of the recombinant PfuAPs onto water-in-oil-in-water (W/O/W) type microcapsules was performed by an in situ polymerization method. All the recombinant PfuAPs prepared in this study were quantitatively immobilized onto microcapsules. The PfuAP-immobilized microcapsules showed no significant loss of enzymatic activity until the 5th round of assays. This result implies that the recombinant PfuAPs were covalently immobilized onto microcapsules. Immobilized PfuAP tagged with a Y-tag having the sequence GGYYY exhibited approximately a twofold higher catalytic activity compared with the wild-type PfuAP. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号