首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1012篇
  免费   86篇
  2023年   4篇
  2021年   18篇
  2020年   8篇
  2019年   7篇
  2018年   12篇
  2017年   14篇
  2016年   21篇
  2015年   39篇
  2014年   25篇
  2013年   50篇
  2012年   59篇
  2011年   59篇
  2010年   30篇
  2009年   30篇
  2008年   45篇
  2007年   69篇
  2006年   58篇
  2005年   70篇
  2004年   42篇
  2003年   50篇
  2002年   35篇
  2001年   29篇
  2000年   35篇
  1999年   33篇
  1998年   10篇
  1997年   9篇
  1996年   9篇
  1995年   4篇
  1994年   8篇
  1993年   7篇
  1992年   14篇
  1991年   14篇
  1990年   14篇
  1989年   31篇
  1988年   15篇
  1987年   14篇
  1986年   17篇
  1985年   11篇
  1984年   10篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1979年   9篇
  1978年   8篇
  1977年   5篇
  1976年   9篇
  1974年   4篇
  1973年   6篇
  1972年   3篇
  1971年   3篇
排序方式: 共有1098条查询结果,搜索用时 15 毫秒
141.
Capillary morphogenesis is a crucial angiogenic response of endothelial cells. Although fibroblast growth factor-2 (FGF-2) potently induces capillary morphogenesis, the contribution of vascular endothelial growth factor-A (VEGF-A) in this response has not been clarified well. Here we examined the role of VEGF signaling in FGF-2-induced capillary morphogenesis by murine brain capillary endothelial cells (IBE cells) and human umbilical vein endothelial cells. FGF-2-treated IBE cells rapidly extended on Matrigel in association with actin reorganization. Chimeric protein, of which the extracellular domain of VEGF receptor-1 (VEGFR-1) fused to immunoglobulin Fc, inhibited FGF-2-induced cell extension, resulting in decreased capillary morphogenesis. Blocking antibody against VEGFR-1 inhibited FGF-2-induced capillary formation. Also, anti-VEGF-A antibody inhibited FGF-2-induced capillary morphogenesis, which was restored by the addition of placental growth factor-1. Similar results were obtained by the experiments with human umbilical vein endothelial cells. Expression of kinase-inactive c-Akt in IBE cells showed impaired capillary morphogenesis promoted by FGF-2. Conversely, stable cell lines expressing activated c-Akt demonstrated ligand-independent capillaries, which were resistant to the treatment with anti-VEGFR-1 blocking antibody. Upstream of c-Akt, calmodulin-dependent signals seemed to be involved. Taken together, signals via VEGFR-1 were required for FGF-2-induced capillary morphogenesis by endothelial cells, and c-Akt activity seemed to be involved in this process.  相似文献   
142.
143.
We have recently isolated a novel cytomatrix at the active zone (CAZ)-associated protein, CAST, and found it directly binds another CAZ protein RIM1 and indirectly binds Munc13-1 through RIM1; RIM1 and Munc13-1 directly bind to each other and are implicated in priming of synaptic vesicles. Here, we show that all the CAZ proteins thus far known form a large molecular complex in the brain, including CAST, RIM1, Munc13-1, Bassoon, and Piccolo. RIM1 and Bassoon directly bind to the COOH terminus and central region of CAST, respectively, forming a ternary complex. Piccolo, which is structurally related to Bassoon, also binds to the Bassoon-binding region of CAST. Moreover, the microinjected RIM1- or Bassoon-binding region of CAST impairs synaptic transmission in cultured superior cervical ganglion neurons. Furthermore, the CAST-binding domain of RIM1 or Bassoon also impairs synaptic transmission in the cultured neurons. These results indicate that CAST serves as a key component of the CAZ structure and is involved in neurotransmitter release by binding these CAZ proteins.  相似文献   
144.
The Epstein-Barr virus BMRF1 DNA polymerase processivity factor, which is essential for viral genome replication, exists mainly as a C-shaped head-to-head homodimer but partly forms a ring-shaped tetramer through tail-to-tail association. Based on its molecular structure, several BMRF1 mutant viruses were constructed to examine their influence on viral replication. The R256E virus, which has a severely impaired capacity for DNA binding and polymerase processivity, failed to form replication compartments, resulting in interference of viral replication, while the C95E mutation, which impairs head-to-head contact in vitro, unexpectedly hardly affected the viral replication. Also, surprisingly, replication of the C206E virus, which is expected to have impairment of tail-to-tail contact, was severely restricted, although the mutant protein possesses the same in vitro biochemical activities as the wild type. Since the tail-to-tail contact surface is smaller than that of the head-to-head contact area, its contribution to ring formation might be essential for viral replication.  相似文献   
145.
146.
Norovirus GII/4 is a leading cause of acute viral gastroenteritis in humans. We examined here how the GII/4 virus evolves to generate and sustain new epidemics in humans, using 199 near-full-length GII/4 genome sequences and 11 genome segment clones from human stool specimens collected at 19 sites in Japan between May 2006 and February 2009. Phylogenetic studies demonstrated outbreaks of 7 monophyletic GII/4 subtypes, among which a single subtype, termed 2006b, had continually predominated. Phylogenetic-tree, bootscanning-plot, and informative-site analyses revealed that 4 of the 7 GII/4 subtypes were mosaics of recently prevalent GII/4 subtypes and 1 was made up of the GII/4 and GII/12 genotypes. Notably, single putative recombination breakpoints with the highest statistical significance were constantly located around the border of open reading frame 1 (ORF1) and ORF2 (P ≤ 0.000001), suggesting outgrowth of specific recombinant viruses in the outbreaks. The GII/4 subtypes had many unique amino acids at the time of their outbreaks, especially in the N-term, 3A-like, and capsid proteins. Unique amino acids in the capsids were preferentially positioned on the outer surface loops of the protruding P2 domain and more abundant in the dominant subtypes. These findings suggest that intersubtype genome recombination at the ORF1/2 boundary region is a common mechanism that realizes independent and concurrent changes on the virion surface and in viral replication proteins for the persistence of norovirus GII/4 in human populations.Norovirus (NoV) is a nonenveloped RNA virus that belongs to the family Caliciviridae and can cause acute gastroenteritis in humans. The NoV genome is a single-stranded, positive-sense, polyadenylated RNA that encodes three open reading frames, ORF1, ORF2, and ORF3 (68). ORF1 encodes a long polypeptide (∼200 kDa) that is cleaved in the cells by the viral proteinase (3Cpro) into six proteins (4). These proteins function in NoV replication in host cells (19). ORF2 encodes a viral capsid protein, VP1. The capsid gene evolved at a rate of 4.3 × 10−3 nucleotide substitutions/site/year (7), which is comparable to the substitution rates of the envelope and capsid genes of human immunodeficiency virus (30). The capsid protein of NoV consists of a shell (S) and two protruding (P) domains: P1 and P2 (47). The S domain is relatively conserved within the same genetic lineages of NoVs (38) and is responsible for the assembly of VP1 (6). The P1 subdomain is also relatively conserved (38) and has a role in enhancing the stability of virus particles (6). The P2 domain is positioned at the most exposed surface of the virus particle (47) and forms binding clefts for putative infection receptors, such as human histo-blood group antigens (HBGA) (8, 13, 14, 60). The P2 domain also contains epitopes for neutralizing antibodies (27, 33) and is consistently highly variable even within the same genetic lineage of NoVs (38). ORF3 encodes a VP2 protein that is suggested to be a minor structural component of virus particles (18) and to be responsible for the expression and stabilization of VP1 (5).Thus far, the NoVs found in nature are classified into five genogroups (GI to GV) and multiple genotypes on the basis of the phylogeny of capsid sequences (71). Among them, genogroup II genotype 4 (GII/4), which was present in humans in the mid-1970s (7), is now the leading cause of NoV-associated acute gastroenteritis in humans (54). The GII/4 is further subclassifiable into phylogenetically distinct subtypes (32, 38, 53). Notably, the emergence and spread of a new GII/4 subtype with multiple amino acid substitutions on the capsid surface are often associated with greater magnitudes of NoV epidemics (53, 54). In 2006 and 2007, a GII/4 subtype, termed 2006b, prevailed globally over preexisting GII/4 subtypes in association with increased numbers of nonbacterial acute gastroenteritis cases in many countries, including Japan (32, 38, 53). The 2006b subtype has multiple unique amino acid substitutions that occur most preferentially in the protruding subdomain of the capsid, the P2 subdomain (32, 38, 53). Together with information on human population immunity against NoV GII/4 subtypes (12, 32), it has been postulated that the accumulation of P2 mutations gives rise to antigenic drift and plays a key role in new epidemics of NoV GII/4 in humans (32, 38, 53).Genetic recombination is common in RNA viruses (67). In NoV, recombination was first suggested by the phylogenetic analysis of an NoV genome segment clone: a discordant branching order was noted with the trees of the 3Dpol and capsid coding regions (21). Subsequently, many studies have reported the phylogenetic discordance using sequences from various epidemic sites in different study periods (1, 10, 11, 16, 17, 22, 25, 40, 41, 44-46, 49, 51, 57, 63, 64, 66). These results suggest that genome recombination frequently occurs among distinct lineages of NoV variants in vivo. However, the studies were done primarily with direct sequencing data of the short genome portion, and information on the cloned genome segment or full-length genome sequences is very limited (21, 25). Therefore, we lack an overview of the structural and temporal dynamics of viral genomes during NoV epidemics, and it remains unclear whether NoV mosaicism plays a role in these events.To clarify these issues, we collected 199 near-full-length genome sequences of GII/4 from NoV outbreaks over three recent years in Japan, divided them into monophyletic subtypes, analyzed the temporal and geographical distribution of the subtypes, collected phylogenetic evidence for the viral genome mosaicism of the subtypes, identified putative recombination breakpoints in the genomes, and isolated mosaic genome segments from the stool specimens. We also performed computer-assisted sequence and structural analyses with the identified subtypes to address the relationship between the numbers of P2 domain mutations at the times of the outbreaks and the magnitudes of the epidemics. The obtained data suggest that intersubtype genome recombination at the ORF1/2 boundary region is common in the new GII/4 outbreaks and promotes the effective acquisition of mutation sets of heterogeneous capsid surface and viral replication proteins.  相似文献   
147.
Arabinogalactan-proteins (AGPs) are a family of plant proteoglycans having large carbohydrate moieties attached to core-proteins. The carbohydrate moieties of AGPs commonly have β-(1→3)(1→6)-galactan as the backbone, to which other auxiliary sugars such as l-Ara and GlcA are attached. For the present study, an α-l-arabinofuranosidase belonging to glycoside hydrolase family (GHF) 54, NcAraf1, and an endo-β-(1→6)-galactanase of GHF 5, Nc6GAL, were identified in Neurospora crassa. Recombinant NcAraf1 (rNcAraf1) expressed in Pichia pastoris hydrolyzed radish AGPs as well as arabinan and arabinoxylan, showing relatively broad substrate specificity toward polysaccharides containing α-l-arabinofuranosyl residues. Recombinant Nc6GAL (rNc6GAL) expressed in P. pastoris specifically acted on β-(1→6)-galactosyl residues. Whereas AGP from radish roots was hardly hydrolyzed by rNc6GAL alone, β-(1→6)-galactan side chains were reduced to one or two galactan residues by a combination of rNcAraf1 and rNc6GAL. These results suggest that the carbohydrate moieties of AGPs are degraded by the concerted action of NcAraf1 and Nc6GAL secreted from N. crassa.  相似文献   
148.
Marine microorganisms degrading porphyran (POR) were found on the surface of thalli of Porphyra yezoensis. Fifteen crude microorganism groups softened and liquefied the surface of agar-rich plate medium. Among these, 11 microorganism groups degraded porphyran that consisted of sulfated polysaccharide in Porphyra yezoensis. Following isolation, 7 POR-degradable microorganisms were isolated from the 11 POR-degradable microorganism groups.  相似文献   
149.
150.
Probiotic bacteria are microorganisms that benefit the host through improvement of the balance of intestinal microflora and possibly by augmentation of host defense systems. We examined the mechanisms for the up-regulation of innate immune responses by a probiotic Lactobacillus casei ATCC27139, in vivo. Using mouse models of systemic Listeria monocytogenes infection and MethA fibrosarcoma tumorigenesis in combination with BALB/c and SCID mice, we found that parenteral administration of L. casei ATCC27139 confers a protective effect against L. monocytogenes infection and anti-tumor activity against MethA fibrosarcoma by activation of innate immunity, while L. casei ATCC27139-J1R strains, which are J1 phage-resistant strains that have been selected from MNNG-treated clones, lacked these activities. Substantial differences between ATCC27139 and ATCC27139-J1R strains were observed in the capacity to induce innate cytokines such as TNF-alpha, IL-12, IL-18, and IFN-gamma, and pathogen-associated molecular pattern receptors, TLR2 and Nod2, by spleen cells. In addition, although phosphorylation of NF-kappaB p65 in spleen was equally enhanced in the ATCC27139- and the ATCC27139-J1R-treated groups, phosphorylation of both p38 MAPK and MAPKAPK-2 was significantly induced only by ATCC27139. Furthermore, inhibitors of NF-kappaB (sulfasalazine) and p38 MAPK (SB203580) significantly reduced cytokine production by the spleen cells of the mice treated with L. casei ATCC27139, suggesting that both NF-kappaB and p38 MAPK signaling pathways play important roles in the augmentation of innate immunity by the probiotic L. casei.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号