首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2603篇
  免费   139篇
  国内免费   7篇
  2022年   8篇
  2021年   17篇
  2020年   17篇
  2019年   25篇
  2018年   28篇
  2017年   32篇
  2016年   49篇
  2015年   58篇
  2014年   83篇
  2013年   138篇
  2012年   160篇
  2011年   162篇
  2010年   108篇
  2009年   93篇
  2008年   139篇
  2007年   148篇
  2006年   131篇
  2005年   159篇
  2004年   144篇
  2003年   144篇
  2002年   143篇
  2001年   74篇
  2000年   62篇
  1999年   61篇
  1998年   35篇
  1997年   28篇
  1996年   20篇
  1995年   20篇
  1994年   15篇
  1993年   18篇
  1992年   35篇
  1991年   41篇
  1990年   28篇
  1989年   30篇
  1988年   36篇
  1987年   29篇
  1986年   26篇
  1985年   15篇
  1984年   15篇
  1983年   17篇
  1982年   19篇
  1981年   11篇
  1980年   12篇
  1979年   17篇
  1978年   11篇
  1977年   8篇
  1976年   11篇
  1974年   10篇
  1971年   12篇
  1969年   10篇
排序方式: 共有2749条查询结果,搜索用时 15 毫秒
141.
The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38alpha is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38alpha in hearts. First, we generated mice with floxed p38alpha alleles and crossbred them with mice expressing the Cre recombinase under the control of the alpha-myosin heavy-chain promoter to obtain cardiac-specific p38alpha knockout mice. These cardiac-specific p38alpha knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38alpha plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation.  相似文献   
142.
To determine the mechanism of 2,4,6-trinitrotoluene (TNT)-induced oxidative stress involving neuronal nitric oxide synthase (nNOS), we examined alterations in enzyme activity and gene expression of nNOS by TNT, with an enzyme preparation and rat cerebellum primary neuronal cells. TNT inhibited nitric oxide formation (IC(50) = 12.4 microM) as evaluated by citrulline formation in a 20,000 g cerebellar supernatant preparation. A kinetic study revealed that TNT was a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. It was found that purified nNOS was capable of reducing TNT, with a specific activity of 3900 nmol of NADPH oxidized/mg/min, but this reaction required CaCl(2)/calmodulin (CaM). An electron spin resonance (ESR) study indicated that superoxide (O(2)(.-)) was generated during reduction of TNT by nNOS. Exposure of rat cerebellum primary neuronal cells to TNT (25 microM) caused an intracellular generation of H(2)O(2), accompanied by a significant increase in nNOS mRNA levels. These results indicate that CaM-dependent one-electron reduction of TNT is catalyzed by nNOS, leading to a reduction in NO formation and generation of H(2)O(2) derived from O(2)(.-). Thus, it is suggested that upregulation of nNOS may represent an acute adaptation to an increase in oxidative stress during exposure to TNT.  相似文献   
143.
We investigated the uptake and bioconcentration of the essential element selenium by a coccolithophorid, Emiliania huxleyi, using [75Se]selenite. The time course of 75Se uptake showed a biphasic pattern, namely a primary phase and a subsequent secondary phase. The primary and secondary phases are due to a rapid selenite uptake process that attained a stationary level within 2 min and a slow Se-accumulation process that continued at a constant rate for 4 h or longer, respectively. Kinetic analysis revealed that the selenite uptake process consists of two components, one saturable and one linearly related to substrate concentration. The Km of the saturable component was 29.8 nM selenite; the uptake activity of this component was suppressed by inhibitors of ATP biogenesis, suggesting that selenite uptake is driven by a high-affinity, active transport system. During a 6-h incubation of cells with [75Se]selenite, 70% of the intracellular 75Se was incorporated into low-molecular-mass compounds (LMCs), and 17% was incorporated into proteins, but [75Se]selenite was barely detectable. A pulse-chase experiment demonstrated that the 75Se that had accumulated in LMCs was transferred into proteins. When the syntheses of amino acids and proteins were each separately inhibited, 75Se incorporation into LMCs and proteins was decreased. These results suggest that E. huxleyi rapidly absorbs selenite, filling a small intracellular pool. Then, Se-containing LMCs are immediately synthesized from the selenite, creating a pool of LMCs that are then metabolized to selenoproteins.  相似文献   
144.
145.
Based on the hypothesis that the dose-limiting side effects of PDE4 inhibitors could be mediated via the central nervous system (CNS), design and synthesis of a hydrophilic analogue is considered to be one approach to improving the side-effect profile of Ariflo 1. Water-soluble piperidine derivatives were found to possess therapeutic potential.  相似文献   
146.
A rust species on Calystegia soldanella in Japan has been treated as Puccinia convolvuli to date. However, morphological characteristics of specimens on C. soldanella collected from Japan are significantly different from those of specimens on other Calystegia and Convolvulus species from different areas of the world. It is proved by inoculation experiment that the rust on C. soldanella is specific to C. soldanella. Based on these results, Puccinia rust on C. soldanella from Japan is described as a new species, Puccinia calystegiae-soldanellae.  相似文献   
147.
Airway compliance is a key factor in understanding lung mechanics and is used as a clinical diagnostic index. Understanding such mechanics in small airways physiologically and clinically is critical. We have determined the "morphometric change" and "localized compliance" of small airways under "near"-physiological conditions; namely, the airways were embedded in parenchyma without dehydration and fixation. Previously, we developed a two-step method to visualize small airways in detail by staining the lung tissue with a radiopaque solution and then visualizing the tissue with a cone-beam microfocal X-ray computed tomography system (Sera et al. J Biomech 36: 1587-1594, 2003). In this study, we used this technique to analyze changes in diameter and length of the same small airways ( approximately 150 microm ID) and then evaluated the localized compliance as a function of airway generation (Z). For smaller (<300-microm-diameter) airways, diameter was 36% larger at end-tidal inspiration and 89% larger at total lung capacity; length was 18% larger at end-tidal inspiration and 43% larger at total lung capacity than at functional residual capacity. Diameter, especially at smaller airways, did not behave linearly with V(1/3) (where V is volume). With increasing lung pressure, diameter changed dramatically at a particular pressure and length changed approximately linearly during inflation and deflation. Percentage of airway volume for smaller airways did not behave linearly with that of lung volume. Smaller airways were generally more compliant than larger airways with increasing Z and exhibited hysteresis in their diameter behavior. Airways at higher Z deformed at a lower pressure than those at lower Z. These results indicated that smaller airways did not behave homogeneously.  相似文献   
148.
The synthesis and structure-activity relationships of a series of 5,7-diarylcyclopenteno[1,2-b]pyridine-6-carboxylic acids are described. Our efforts have been focused on modification of the aryl ring at the 5-position and the alkyl substituent at the 2-position of the bottom 4-methoxyphenyl ring in an effort to develop orally available ET(A) selective antagonists with safer profiles in terms of the P-450 enzyme inhibitory activity. Incorporation of a hydroxymethyl group as an alkyl substituent in methylenedioxyphenyl and 6-dihydrobenzofuran derivatives led to the identification of orally bioavailable ET(A) selective antagonists 1f and 7f. These compounds also showed not only excellent binding affinity (IC(50) < 0.10nM, more than 800-fold selectivity for the ET(A) receptor over the ET(B) receptor) but also sufficient oral bioavailability, 48% and 56%, respectively, in rats. Furthermore, these compounds did not exhibit either competitive or mechanism-based inhibition of human cytochrome P450 enzymes.  相似文献   
149.
The hypothesis that the dose-limiting side effects of PDE4 inhibitors could be mediated via the central nervous system prompted us to design and synthesize a hydrophilic piperidine analog to improve the side effect profile of Ariflo 1, which is an orally active second-generation PDE4 inhibitor. During evaluation of various water-soluble piperidine analogs, 2a-b, 11b-14b, and 17a showed therapeutic potential in cross-species comparison studies. The following three findings were obtained: (1) The hydroxamic acid group, a well known metal chelator, caused a marked increase of inhibitory activity. (2) Water-soluble piperidine analogs lacked the configurational isomerism of Ariflo 1 without loss of inhibitory activity. (3) Replacement of the 4-methoxy residue with a difluoromethoxy residue led to an increase of in vivo potency. Structure-activity relationships are presented. Single-dose rat pharmacokinetic data for 11b, 12b, and 17a are also presented.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号