全文获取类型
收费全文 | 1586篇 |
免费 | 68篇 |
国内免费 | 4篇 |
专业分类
1658篇 |
出版年
2022年 | 6篇 |
2021年 | 9篇 |
2020年 | 13篇 |
2019年 | 17篇 |
2018年 | 19篇 |
2017年 | 28篇 |
2016年 | 31篇 |
2015年 | 45篇 |
2014年 | 62篇 |
2013年 | 94篇 |
2012年 | 110篇 |
2011年 | 116篇 |
2010年 | 67篇 |
2009年 | 66篇 |
2008年 | 96篇 |
2007年 | 114篇 |
2006年 | 90篇 |
2005年 | 120篇 |
2004年 | 98篇 |
2003年 | 97篇 |
2002年 | 89篇 |
2001年 | 31篇 |
2000年 | 20篇 |
1999年 | 23篇 |
1998年 | 26篇 |
1997年 | 13篇 |
1996年 | 13篇 |
1995年 | 14篇 |
1994年 | 10篇 |
1993年 | 11篇 |
1992年 | 8篇 |
1991年 | 10篇 |
1990年 | 6篇 |
1989年 | 8篇 |
1988年 | 10篇 |
1987年 | 14篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 7篇 |
1983年 | 9篇 |
1982年 | 9篇 |
1981年 | 4篇 |
1980年 | 4篇 |
1979年 | 3篇 |
1978年 | 4篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 3篇 |
1967年 | 1篇 |
1964年 | 1篇 |
排序方式: 共有1658条查询结果,搜索用时 46 毫秒
131.
Nakashima K Ueno N Kamei D Tanioka T Nakatani Y Murakami M Kudo I 《Biochimica et biophysica acta》2003,1633(2):96-105
Distinct functional coupling between cyclooxygenases (COXs) and specific terminal prostanoid synthases leads to phase-specific production of particular prostaglandins (PGs). In this study, we examined the coupling between COX isozymes and PGF synthase (PGFS). Co-transfection of COXs with PGFS-I belonging to the aldo-keto reductase family into HEK293 cells resulted in increased production of PGF(2alpha) only when a high concentration of exogenous arachidonic acid (AA) was supplied. However, this enzyme failed to produce PGF(2alpha) from endogenous AA, even though significant increase in PGF(2alpha) production occurred in cells transfected with COX-2 alone. This poor COX/PGFS-I coupling was likely to arise from their distinct subcellular localization. Measurement of PGF(2alpha)-synthetic enzyme activity in homogenates of several cells revealed another type of PGFS activity that was membrane-bound, glutathione (GSH)-activated, and stimulus-inducible. In vivo, membrane-bound PGFS activity was elevated in the lung of lipopolysaccharide-treated mice. Taken together, our results suggest the presence of a novel, membrane-associated form of PGFS that is stimulus-inducible and is likely to be preferentially coupled with COX-2. 相似文献
132.
LjMOT1, a high‐affinity molybdate transporter from Lotus japonicus,is essential for molybdate uptake,but not for the delivery to nodules 下载免费PDF全文
Guilan Duan Tsuneo Hakoyama Takehiro Kamiya Hiroki Miwa Fabien Lombardo Shusei Sato Satoshi Tabata Zheng Chen Toshihiro Watanabe Takuro Shinano Toru Fujiwara 《The Plant journal : for cell and molecular biology》2017,90(6):1108-1119
Molybdenum (Mo) is an essential nutrient for plants, and is required for nitrogenase activity of legumes. However, the pathways of Mo uptake from soils and then delivery to the nodules have not been characterized in legumes. In this study, we characterized a high‐affinity Mo transporter (LjMOT1) from Lotus japonicus. Mo concentrations in an ethyl methanesulfonate–mutagenized line (ljmot1) decreased by 70–95% compared with wild‐type (WT). By comparing the DNA sequences of four AtMOT1 homologs between mutant and WT lines, one point mutation was found in LjMOT1, which altered Trp292 to a stop codon; no mutation was found in the other homologous genes. The phenotype of Mo concentrations in F2 progeny from ljmot1 and WT crosses were associated with genotypes of LjMOT1. Introduction of endogenous LjMOT1 to ljmot1 restored Mo accumulation to approximately 60–70% of the WT. Yeast expressing LjMOT1 exhibited high Mo uptake activity, and the Km was 182 nm . LjMOT1 was expressed mainly in roots, and its expression was not affected by Mo supply or rhizobium inoculation. Although Mo accumulation in the nodules of ljmot1 was significantly lower than that of WT, it was still high enough for normal nodulation and nitrogenase activity, even for cotyledons‐removed ljmot1 plants grown under low Mo conditions, in this case the plant growth was significantly inhibited by Mo deficiency. Our results suggest that LjMOT1 is an essential Mo transporter in L. japonicus for Mo uptake from the soil and growth, but is not for Mo delivery to the nodules. 相似文献
133.
Marek Szecowka Sonia Osorio Toshihiro Obata Wagner L. Ara��jo Johannes Rohrmann Adriano Nunes-Nesi Alisdair R. Fernie 《Plant physiology》2012,160(4):2227-2238
Modulation of the malate content of tomato (Solanum lycopersicum) fruit by altering the expression of mitochondrially localized enzymes of the tricarboxylic acid cycle resulted in enhanced transitory starch accumulation and subsequent effects on postharvest fruit physiology. In this study, we assessed whether such a manipulation would similarly affect starch biosynthesis in an organ that displays a linear, as opposed to a transient, kinetic of starch accumulation. For this purpose, we used RNA interference to down-regulate the expression of fumarase in potato (Solanum tuberosum) under the control of the tuber-specific B33 promoter. Despite displaying similar reductions in both fumarase activity and malate content as observed in tomato fruit expressing the same construct, the resultant transformants were neither characterized by an increased flux to, or accumulation of, starch, nor by alteration in yield parameters. Since the effect in tomato was mechanistically linked to derepression of the reaction catalyzed by ADP-glucose pyrophosphorylase, we evaluated whether the lack of effect on starch biosynthesis was due to differences in enzymatic properties of the enzyme from potato and tomato or rather due to differential subcellular compartmentation of reductant in the different organs. The results are discussed in the context both of current models of metabolic compartmentation and engineering.Starch is the most important carbohydrate used for food and feed purposes and represents the major resource for our diet (Smith, 2008). The total yield of starch in rice (Oryza sativa), corn (Zea mays), wheat (Triticum aestivum), and potato (Solanum tuberosum) exceeds 109 tons per year (Kossmann and Lloyd, 2000; Slattery et al., 2000). In addition to its use in a nonprocessed form, extracted starch is processed in many different ways, for instance as a high-Fru syrup, as a food additive, or for various technical purposes. As a result of this considerable importance, increasing the starch content of plant tissues has been a major goal for many years, with both classical breeding and biotechnological approaches being taken extensively over the last few decades (Martin and Smith, 1995; Regierer et al., 2002).The pathway by which carbon is converted from Suc to starch in the potato tuber is well established (Kruger, 1997; Fernie et al., 2002; Geigenberger et al., 2004; Geigenberger, 2011). Imported Suc is cleaved in the cytosol by Suc synthase, resulting in the formation of UDP-Glc and Fru; the UDP-Glc is subsequently converted to Glc-1-P by UDP-Glc pyrophosphorylase. The second product of the Suc synthase reaction, Fru, is efficiently phosphorylated to Fru-6-P by fructokinase (Renz et al., 1993; Davies et al., 2005). Fru-6-P is freely converted to Glc-6-P, in which form it normally enters the amyloplast (Kammerer et al., 1998; Tauberger et al., 2000; Zhang et al., 2008), and once in the plastid, it is converted to starch via the concerted action of plastidial phosphoglucomutase, ADP-Glc pyrophosphorylase (AGPase), and the various isoforms of starch synthase (Martin and Smith, 1995; Geigenberger, 2011). Of these reactions, although some of the control of starch synthesis resides in the plastidial phosphoglucomutase reaction (Fernie et al., 2001b), the AGPase reaction harbors the highest proportion of control within the linear pathway (Sweetlove et al., 1999; Geigenberger et al., 1999, 2004). In addition, considerable control resides in both the Glc-6-P phosphate antiporter (Zhang et al., 2008) and the amyloplastidial adenylate transporter (Tjaden et al., 1998; Zhang et al., 2008) as well as in reactions external to the pathways, such as the amyloplastidial adenylate kinase (Regierer et al., 2002), cytosolic UMP synthase (Geigenberger et al., 2005), and mitochondrial NAD-malic enzyme (Jenner et al., 2001).As part of our ongoing study of the constituent enzymes of the tricarboxylic acid (TCA) cycle, we made an initially surprising observation that increasing or decreasing the content of malate via a fruit-specific expression of antisense constructs targeted against the mitochondrial malate dehydrogenase or fumarase, respectively, resulted in opposing changes in the levels of starch (Centeno et al., 2011). We were able to demonstrate that these plants were characterized by an altered cellular redox balance and that this led to changes in the activation state of the AGPase reaction. Given that starch only accumulates transiently in tomato (Solanum lycopersicum; Beckles et al., 2001) as a consequence of this activation, the fruits were characterized by altered sugar content at ripening, a fact that dramatically altered their postharvest characteristics (Centeno et al., 2011). Here, we chose to express the antisense fumarase construct in potato in order to ascertain the effect of the manipulation in an organ that linearly accumulates starch across its development. The results obtained are compared and contrasted with those of the tomato fruit and within the context of current models of subcellular redox regulation. 相似文献
134.
Summary We have identified and localized two incompatibility determinants (IncA and IncB) within a 1.3 kb segment of ColE2 sufficient for autonomous replication. The IncA determinant is localized in a region shorter than 250 bp and expresses incompatibility against both ColE2 and ColE3. The region which determines sensitivity to the IncA determinant seems to overlap with the region specifying the IncA determinant. The expression of the trans-acting factor(s) specifically required for replication of ColE2 interferes with expression of the IncA determinant against ColE2 but not against ColE3. The IncA determinant might be at least partly responsible for the copy number control of the plasmid. The IncB determinant is localized in a 50 bp region (origin) which is sufficient for initiation of replication in the presence of the trans-acting factor(s). The IncB determinant is specific for ColE2 and seems to be due to titration of the trans-acting essential replication factor(s) by binding. 相似文献
135.
136.
Tolerance induced by grafting semi-allogeneic adult skin to larval Xenopus laevis: Possible involvement of specific suppressor cell activity 总被引:3,自引:0,他引:3
Toshihiro Nakamura Mitsugu Maéno Shin Tochinai Chiaki Katagiri 《Differentiation; research in biological diversity》1987,35(2):108-114
Major histocompatibility complex (MHC)-homozygous Xenopus laevis were rendered tolerant to semi-allogeneic antigens by grafting skins of adult frogs during larval stages (larvally induced tolerance), and this tolerant state was compared with the tolerance induced in early thymectomized frogs by the grafting of semi-allogeneic nonlymphoid thymuses (thymus-reconstituted tolerance). In contrast to a total inability of thymus-reconstituted frogs both to reject skins and to exhibit a mixed leukocyte reaction (MLR) against the semi-allogeneic donor, larvally induced tolerant frogs showed a strong MLR against leukocytes of the tolerizing skin donor (split tolerance). Breakdown of the tolerant state in thymus-reconstituted frogs were easily accomplished by inoculation with syngeneic splenocytes, but this breakdown was extremely difficult to achieve in frogs with larvally induced tolerance. The injection of splenocytes from larvally induced tolerant frogs into normal frogs significantly suppressed semi-allogeneic graft rejection in the latter group; no suppression was obtained when splenocytes from thymus-reconstituted frogs were used. In addition, in the thymectomized frogs, recovery of allograft rejection capacity against the pertinent semi-allogeneic antigens were suppressed by the injection of splenocytes from larvally induced tolerant frogs, with the degree of suppression depending on the splenocyte dose. These results indicate that the larvally induced tolerant state is maintained by specifically induced suppressor cells affecting the in vivo allograft response but not the MLR. 相似文献
137.
The yeast Candida boidinii PEP4 and PRB1 genes, encoding proteinase A (PrA) and proteinase B (PrB), respectively, have been cloned and their primary structures were analyzed. The open reading frames of the PEP4 gene (1263 bp encoding a protein of 420 amino acids) and the PRBI gene (1683 bp encoding a protein of 560 amino acids) were found. The deduced amino acid sequences of PrA and PrB are very similar to Saccharomyces cerevisiae PrA and PrB (64% and 61% identities, respectively). Both PEP4 and PRBI genes were disrupted in the C. boidinii genome by one-step gene disruption. The resultant pep4delta and the pep4delta prb1delta strains lost protease activity when compared with the wild-type original strain. The constructed C. boidinii strains are expected to be useful hosts for heterologous protein production. 相似文献
138.
Fujihara J Tabuchi M Inoue T Yasuda T Fujita Y Takeshita H 《Analytical biochemistry》2011,(1):2591-79
Deoxyribonuclease I (DNase I) activity in serum has been shown to be a novel diagnostic marker for the early detection of acute myocardial infarction (AMI). However, the conventional method to measure DNase I activity is time-consuming. In the current study, to develop a rapid assay method for DNase I activity for clinical purposes, a microchip electrophoresis device was used to measure DNase I activity. Because DNase I is an endonuclease that degrades double-stranded DNA endo-nucleolytically to produce oligonucleotides, degradation of the DNA standard caused by DNase I action was detected using microchip electrophoresis. We detected DNase I activity within 10 min. This is the first study to apply microchip electrophoresis for the detection of DNase I activity; furthermore, it seems plausible that reduction of analysis time for DNase I activity could make this novel assay method using microchip electrophoresis applicable in clinical use. 相似文献
139.
Haruo Takeshita Toshihiro Yasuda Tamiko Nakajima Kouichi Mogi Yasushi Kaneko Reiko Iida Koichiro Kishi 《European journal of biochemistry》2003,270(2):307-314
We purified pancreatic deoxyribonucleases I (DNases I) from three snakes, Elaphe quadrivirgata, Elaphe climacophora and Agkistrodon blomhoffii, and cloned their cDNAs. Each mature snake DNase I protein comprised 262 amino acids. Wild-type snake DNases I with Leu130 were more thermally unstable than wild-type mammalian and avian DNases I with Ile130. After substitution of Leu130Ile, the thermal stabilities of the snake enzymes were higher than those of their wild-type counterparts and similar to mammalian wild-type enzyme levels. Conversely, substituting Ile130Leu of mammalian DNases I made them more thermally unstable than their wild-type counterparts. Therefore, a single amino acid substitution, Leu130Ile, might be involved in an evolutionally critical change in the thermal stabilities of vertebrate DNases I. Amphibian DNases I have a Ser205 insertion in a Ca2+-binding site of mammalian and avian enzymes that reduces their thermal stabilities [Takeshita, H., Yasuda, T., Iida, R., Nakajima, T., Mori, S., Mogi, K., Kaneko, Y. & Kishi, K. (2001) Biochem. J.357, 473-480]. Thus, it is plausible that the thermally stable wild-type DNases I of the higher vertebrates, such as mammals and birds, have been generated by a single Leu130Ile substitution of reptilian enzymes through molecular evolution following Ser205 deletion from amphibian enzymes. This mechanism may reflect one of the evolutionary changes from cold-blooded to warm-blooded vertebrates. 相似文献
140.
Hiroya Kobayashi Makoto Azumi Satoshi Hayashi Keisuke Sato Naoko Aoki Shoji Kimura Hidehiro Kakizaki Toshihiro Nagato Yasuaki Harabuchi Masatoshi Tateno Esteban Celis 《Cancer immunology, immunotherapy : CII》2010,59(7):1029-1039
Aurora kinase A (Aurora-A) is a cell cycle-associated serine–threonine kinase that is overexpressed by various types of cancer and is highly associated with poor prognosis. Since the expression of Aurora-A in normal tissues has been shown to be significantly lower as compared to tumor cells, this protein is being considered as a potential tumor-associated antigen for developing immunotherapies. The goal in the present study was to identify CD4 helper T lymphocyte (HTL) epitopes for Aurora-A for the design of T cell-based immunotherapies against Aurora-A-expressing tumors. Synthetic peptides corresponding to potential HTL epitopes were identified from Aurora-A and used to stimulate CD4 T lymphocytes in vitro to generate antigen-specific HTL clones that were evaluated for antigen specificity, MHC restriction and for their ability to interact with Aurora-A-expressing tumor cells. The results show that two peptides (Aurora-A161–175 and Aurora-A233–247) were effective in generating HTL responses that were restricted by more than one MHC class II allele (i.e., promiscuous responses). The CD4 HTL clones were able to directly recognize Aurora-A-expressing tumor cells in an antigen-specific and MHC class II-restricted manner and some of the clones displayed cytolytic activity toward Aurora-A + tumor cells. Both of these peptides were capable of stimulating in vitro T cell responses in patients with bladder cancer. 相似文献