首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2508篇
  免费   125篇
  国内免费   1篇
  2634篇
  2022年   7篇
  2021年   18篇
  2020年   14篇
  2019年   29篇
  2018年   29篇
  2017年   27篇
  2016年   36篇
  2015年   70篇
  2014年   70篇
  2013年   124篇
  2012年   90篇
  2011年   115篇
  2010年   85篇
  2009年   66篇
  2008年   109篇
  2007年   118篇
  2006年   133篇
  2005年   132篇
  2004年   143篇
  2003年   132篇
  2002年   147篇
  2001年   61篇
  2000年   56篇
  1999年   51篇
  1998年   28篇
  1997年   32篇
  1996年   33篇
  1995年   32篇
  1994年   36篇
  1993年   27篇
  1992年   33篇
  1991年   39篇
  1990年   45篇
  1989年   48篇
  1988年   38篇
  1987年   40篇
  1986年   44篇
  1985年   32篇
  1984年   29篇
  1983年   22篇
  1982年   25篇
  1981年   26篇
  1980年   16篇
  1979年   26篇
  1978年   21篇
  1977年   18篇
  1976年   13篇
  1975年   10篇
  1974年   9篇
  1973年   10篇
排序方式: 共有2634条查询结果,搜索用时 0 毫秒
61.
Sialidase isolated from human placenta is associated with several proteins including acid beta-galactosidase, carboxypeptidase, N-acetyl-alpha-galactosaminidase, and others. These proteins are thought to form an aggregated complex during isolation of sialidase. One of the proteins of 60 kDa was recently identified by Potier et al. (Biochem. Biophys. Res. Comm. 173, 449-456, 1990) as a sialidase protein: this protein also cross-reacted with anti-prosaposin antibodies. We have isolated this protein and from the following evidence identified it as a heavy chain component of immunoglobulin G and not sialidase or a derivative of prosaposin. On gel filtration HPLC, sialidase activity and the 60 kDa protein were clearly separated from one another. The 60 kDa protein cross-reacted not only with antibodies raised against human saposins A, C, and D, but also with second antibody (goat anti-rabbit immunoglobulin G antibody) alone. This 60 kDa protein strongly cross-reacted with anti-human immunoglobulin G antibodies. The sequence of the initial 15 amino acids from the N-terminus of the 60 kDa protein was identical to the sequence of an immunoglobulin G heavy chain protein Tie (gamma 1).  相似文献   
62.
The binding of polymorphonuclear granulocytes (PMN) to activated vascular endothelium is a crucial step in the recruitment of PMN to an inflammatory site. Studies employing cytokine-activated endothelium in culture have shown that PMN binding involves the CD18 family of leukocyte integrins, but also CD18-independent adhesion mechanism(s) on PMN that have not been defined. We unify here two previously disparate approaches to study cell adhesion events between endothelial cells and leukocytes. We show that antibodies to human LECAM-1, the peripheral lymph node homing receptor that is also expressed on PMN, partially inhibit the adhesion of human PMN not only to HEV in frozen sections of lymph node tissue, but also to cytokine-activated human umbilical vein endothelium in vitro. Inhibition with anti-LECAM-1 antibodies and anti-CD18 antibodies is additive. Furthermore, the anti-LECAM-1 antibodies inhibit the adhesion of CD18-deficient PMN to cytokine activated human endothelial cells. These findings indicate that LECAM-1 and CD18-mediated binding mechanisms are independent, and act coordinately or sequentially to mediate PMN attachment to cytokine activated endothelium.  相似文献   
63.
Summary In cichlid, poecilid and centrarchid fishes luteinizing hormone releasing hormone (LHRH)-immunoreactive neurons are found in a cell group (nucleus olfactoretinalis) located at the transition between the ventral telencephalon and olfactory bulb. Processes of these neurons project to the contralateral retina, traveling along the border between the internal plexiform and internal nuclear layer, and probably terminating on amacrine or bipolar cells. Horseradish peroxidase (HRP) injected into the eye or optic nerve is transported retrogradely in the optic nerve to the contralateral nucleus olfactoretinalis where neuronal perikarya are labeled. Labeled processes leave this nucleus in a rostral direction and terminate in the olfactory bulb. The nucleus olfactoretinalis is present only in fishes, such as cichlids, poecilids and centrarchids, in which the olfactory bulbs border directly the telencephalic hemispheres. In cyprinid, silurid and notopterid fishes, in which the olfactory bulbs lie beneath the olfactory epithelium and are connected to the telencephalon via olfactory stalks, the nucleus olfactoretinalis or a comparable arrangement of LHRH-immunoreactive neurons is lacking. After retrograde transport of HRP in the optic nerve of these fishes no labeling of neurons in the telencephalon occurred. It is proposed that the nucleus olfactoretinalis anatomically and functionally interconnects and integrates parts of the olfactory and optic systems.  相似文献   
64.
It has been known in amphibians and starfishes that a cytoplasmic factor called maturation-promoting factor (MPF), produced in maturing oocytes under the influence of the maturation-inducing hormones, can induce germinal vesicle breakdown (GVBD) and the subsequent process of meiotic maturation. The present study revealed that injection of cytoplasm of maturing starfish oocytes (starfish MPF) into immature sea cucumber oocytes brought about maturation of the recipients. Amphibian MPF obtained from mature oocytes of Xenopus laevis or Bufo bufo was found to induce maturation of starfish oocytes following injection. Cytoplasm taken from cleaving starfish blastomeres induced maturation when injected into immature starfish oocytes. The maturation-inducing activity of cytoplasm of starfish blastomeres changed along with the mitotic cell cycle during 1- to 4-cell stages so far tested and reached a peak just before cleaving. Furthermore, an extract of mammalian cultured cells, CHO or V-79, synchronized in M phase, induced GVBD in starfish oocytes following injection, whereas S phase extract had little activity. These facts suggest that MPF generally brings about nuclear membrane breakdown in both meiosis and mitosis, and that the nature of MPF is very similar among vertebrates and invertebrates.  相似文献   
65.
66.
A small quantity of unsaturated diacylglycerol (DG) sharply decreased the Ca2+ and phospholipid concentrations needed for full activation of a Ca2+-activated, phospholipid-dependent multifunctional protein kinase described earlier (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T. and Nishizuka, Y. (1979)J.Biol.Chem.254. 3692–3695). In the presence of unsaturated DG and micromolar order of Ca2+, phosphatidylserine (PS) was most relevant with the capacity to activate the enzyme, whereas phosphatidylethanolamine and phosphatidylinositol (PI) were far less effective. Phosphatidylcholine was practically inactive. It is possible, therefore, that unsaturated DG, which may be derived from PI turnover provoked by various extracellular stimulators, acts as a messenger for activating the enzyme, and that Ca2+ and various phospholipids such as PI and PS seem to play a role cooperatively in this unique receptor mechanism.  相似文献   
67.
68.
A new multifunctional protein kinase, which normally exists as an inactive form in the soluble fraction in mammalian tissues, attaches to membranes to exhibit full enzymatic activity. A low concentration of Ca2+ is absolutely necessary for this activation. This process is reversible. cAMP shows no effect. The active factors in membranes are phosphatidylinositol, phosphatidylserine, phosphatidic acid, diphosphatidylglycerol, and phosphatidylethanolamine in that order. Phosphatidylcholine and sphingomyelin are far less effective. Cytoplasmic as well as other membrane fractions from various tissues are active in supporting the enzymatic activity. A possible role of this Ca2+ and phospholipid-activated protein kinase system in transmembrane control is proposed.  相似文献   
69.
Summary Ceramide is the fundamental structure and key intermediate of all sphingolipids. Biosynthesis and catabolism of brain ceramide, especially their relationship to the metabolism of more complex sphingolipids in brain, are reviewed. Human genetic diseases which involve altered ceramide metabolism are also discussed.  相似文献   
70.
Summary -Hydroxylation is an enzymatic reaction by which long-chain fatty acids are converted to their -hydroxy derivatives. This reaction, in animals, can be detected only in developing brain and is the rate-determining step in the synthesis of hydroxycerebroside, which is an indispensable and abundant myelin lipid. In addition to a particulate fraction from brain, two cytoplasmic factors, one heat-stable and the other heat-labile, are required for -hydroxylation. During the past eight years we have been investigating -hydroxylation. Our progress is summarized and discussed here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号