首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1733篇
  免费   59篇
  国内免费   1篇
  2023年   5篇
  2022年   5篇
  2021年   13篇
  2020年   9篇
  2019年   25篇
  2018年   20篇
  2017年   14篇
  2016年   21篇
  2015年   52篇
  2014年   47篇
  2013年   108篇
  2012年   72篇
  2011年   94篇
  2010年   72篇
  2009年   61篇
  2008年   104篇
  2007年   111篇
  2006年   110篇
  2005年   112篇
  2004年   123篇
  2003年   115篇
  2002年   126篇
  2001年   23篇
  2000年   23篇
  1999年   26篇
  1998年   26篇
  1997年   26篇
  1996年   26篇
  1995年   25篇
  1994年   28篇
  1993年   13篇
  1992年   9篇
  1991年   3篇
  1990年   13篇
  1989年   14篇
  1988年   7篇
  1987年   9篇
  1986年   12篇
  1985年   9篇
  1984年   15篇
  1983年   7篇
  1982年   11篇
  1981年   10篇
  1980年   9篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1974年   2篇
  1967年   2篇
  1961年   2篇
排序方式: 共有1793条查询结果,搜索用时 15 毫秒
991.
992.
To elucidate the physiological importance of neuronal (N)-type calcium channels in sympathetic controls, we analyzed N-type channel-deficient (NKO) mice. Immunoprecipitation analysis revealed increased interaction between beta3 (a major accessory subunit of N-type channels) and R-type channel-forming CaV2.3 in NKO mice. R-R intervals in NKO ECG recordings were elongated and fluctuating, suggesting disturbed sympathetic tonus. N-type channel inhibitors elongated the R-R interval in control mice, whereas R-type channel blocking with SNX-482 significantly affected NKO but not control mice, indicating a compensatory role for R-type channels. Echocardiography and Langendorff heart analysis confirmed a major role for R-type channels in NKO mice. Combined, our biochemical and physiological analyses strongly suggest that the remaining sympathetic tonus in NKO mice is dependent on R-type calcium channels.  相似文献   
993.
Retinoic acid (RA) plays an important role in cell growth and tissue development and is also a regulating factor of pituitary function. However, whether RA is generated in the pituitary gland and plays a role as a paracrine and/or autocrine hormone is generally unknown. RA is synthesized from retinoids through oxidation processes. Dehydrogenases catalyzing the oxidation of retinal to RA are members of the retinaldehyde dehydrogenase (RALDH) family. In this study, we examined the expression of RALDH1, RALDH2, and RALDH3 mRNA in the rat embryonic pituitary gland. By in situ hybridization with digoxigenin-labeled cRNA probes, we detected mRNA expression for RALDH2 and RALDH3, but not RALDH1. The expression of RALDH2 and RALDH3 was located in Rathke’s pouch at embryonic day 12.5 (E12.5) and subsequently in the developing anterior pituitary gland. We also used quantitative real-time polymerase chain reaction to analyze RALDH2 and RALDH3 mRNA expression levels during the development of the pituitary gland. We found that pituitary RALDH2 and RALDH3 mRNA levels were high at E17.5 and decreased markedly after birth. Our study is the first to show that RALDH2 and RALDH3, but not RALDH1, are expressed in the embryonic anterior pituitary gland of the rat.  相似文献   
994.
The middle portion of Meckel’s cartilage (one of four portions that disappear with unique fate) degrades via hypertrophy and the cell death of chondrocytes and via the resorption of cartilage by chondroclasts. We have examined the immunolocalization of matrix metalloproteinase-2 (MMP-2), MMP-9, MMP-13, and MMP-14 (members of the MMP activation cascade) and galectin-3 (an endogenous substrate for MMP-9 and an anti-apoptotic factor) during resorption of Meckel’s cartilage in embryonic mice and have compared the results with those of developing endochondral bones in hind limbs. MMP immunoreactivity, except for MMP-2, is present in nearly all chondrocytes in the middle portion of Meckel’s cartilage. On embryonic day 15 (E15), faint MMP-2-immunoreactive and intense MMP-13-immunoreactive signals occur in the periosteal bone matrix deposited by periosteal osteoblasts on the lateral surface, whereas MMP-9 and MMP-14 are immunolocalized in the peripheral chondrocytes of Meckel’s cartilage. The activation cascade of MMPs by face-to-face cross-talk between cells may thus contribute to the initiation of Meckel’s cartilage degradation. On E16, immunopositive signaling for MMP-13 is detectable in the ruffled border of chondroclasts at the resorption front, whereas immunostaining for galectin-3 is present at all stages of chondrocyte differentiation, especially in hypertrophic chondrocytes adjacent to chondroclasts. Galectin-3-positive hypertrophic chondrocytes may therefore coordinate the resorption of calcified cartilage through cell-to-cell contact with chondroclasts. In metatarsal specimens from E16, MMPs are detected in osteoblasts, young osteocytes, and the bone matrix of the periosteal envelope, whereas galectin-3 immunoreactivity is intense in young periosteal osteocytes. In addition, intense MMP-9 and MMP-14 immunostaining has been preferentially found in pre-hypertrophic chondrocytes, although galectin-3 immunoreactivity markedly decreases in hypertrophic chondrocytes. These results indicate that the degradation of Meckel’s cartilage involves an activation cascade of MMPs that differs from that in endochondral bone formation.  相似文献   
995.
In autoimmune disorders of the peripheral nervous system (PNS) such as Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, breakdown of the blood-nerve barrier (BNB) has been considered as a key step in the disease process. Hence, it is important to know the cellular property of peripheral nerve microvascular endothelial cells (PnMECs) constituting the bulk of BNB. Although many in vitro models of the blood-brain barrier (BBB) have been established, very few in vitro BNB models have been reported so far. We isolated PnMECs from transgenic rats harboring the temperature-sensitive SV40 large T-antigen gene (tsA58 rat) and investigated the properties of these "barrier-forming cells". Isolated PnMECs (TR-BNBs) showed high transendothelial electrical resistance and expressed tight junction components and various types of influx as well as efflux transporters that have been reported to function at BBB. Furthermore, we confirmed the in vivo expression of various BBB-forming endothelial cell markers in the endoneurium of a rat sciatic nerve. These results suggest that PnMECs constituting the bulk of BNB have a highly specialized characteristic resembling the endothelial cells forming BBB.  相似文献   
996.
R-125224 is a novel humanized anti-human Fas monoclonal antibody prepared from HFE7A, which is a monoclonal mouse IgG anti-Fas antibody, by grafting the mouse complementarity-determining regions to human IgG, presently being developed as a drug for treatment of rheumatoid arthritis. In the present study, we investigated the tissue distribution of radioactivity in cynomolgus monkeys with collagen-induced arthritis at the arm joint (CIA monkeys) after intravenous administration of (125)I-labeled R-125224 ((125)I-R-125224). At 168 h after administration, we observed a high radioactivity in the bone marrow, thymus, lungs, liver, adrenals, spleen, ovaries, axillary lymph node and mesenteric lymph node compared to the radioactivity in the plasma. These tissues and organs in human are reported to express Fas antigen, strongly suggesting a specific binding of (125)I-R-125224 to Fas antigen in cynomolgus monkeys. Semi-micro autoradioluminograms of arm joint showed that radioactivity is detected in pharmacological site, such as the bone marrow and articular cavity at 168 h. The kinetics in binding of R-125224 to activated monkey lymphocytes and hepatocytes was also investigated. K(d) values of activated lymphocytes and hepatocytes were 1.51+/-0.08 and 0.60+/-0.11 nM, respectively, which were similar to those values in human lymphocytes and hepatocytes, demonstrating that R-125224 cross-reacts with the monkey Fas antigen.  相似文献   
997.
Severe combined immune deficiency (SCID) mice exhibit limited repair of DNA double-strand breaks and are sensitive to ionizing radiation due to a mutation of the DNA-dependent protein kinase catalytic subunit gene. To elucidate the effects of deficient DNA double-strand break repair on radiation-induced carcinogenesis, the dose-response relationship for the induction of all tumor types was examined in wild-type and SCID mice. In wild-type mice, the incidence of thymic lymphomas at gamma-ray doses up to 1 Gy was almost equal to the background level, increased gradually above 1 Gy, and reached a maximum of 12.5% at 5 Gy, which is indicative of a threshold dose of less than 1 Gy. SCID mice were extremely susceptible to the induction of spontaneous and radiation-induced thymic lymphomas. The incidence of thymic lymphomas in SCID mice irradiated with 0.1 Gy or less was similar to the background level; that is, it increased markedly from 31.7% at 0.1 Gy to 51.4% at 0.25 Gy, and reached a maximum of 80.6% at 2 Gy, suggesting the presence of a threshold-like dose at low gamma-ray doses, even in radiosensitive SCID mice. As the average latency for the induction of thymic lymphomas at 0.1 Gy was significantly shortened, the effect of 0.1 Gy gamma-rays on thymic lymphoma induction was marginal. The high susceptibility of SCID mice to develop thymic lymphomas indicates that thymic lymphomas are induced by a defect in DNA double-strand break repair or V(D)J recombination. Excessive development of tumors other than thymic and nonthymic lymphomas was not observed in SCID mice. Furthermore, our data suggest that the defective double-strand break repair in SCID mice is not a major determinant for the induction of nonlymphoid tumors.  相似文献   
998.
999.
1000.
Neurochemical Research - Trimethyltin (TMT) has been used as a cytotoxin to neurons rather than glial cells in the mammalian hippocampus. The systemic administration of TMT led to declined...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号