全文获取类型
收费全文 | 2173篇 |
免费 | 91篇 |
国内免费 | 1篇 |
专业分类
2265篇 |
出版年
2022年 | 7篇 |
2021年 | 15篇 |
2020年 | 11篇 |
2019年 | 31篇 |
2018年 | 24篇 |
2017年 | 16篇 |
2016年 | 25篇 |
2015年 | 63篇 |
2014年 | 52篇 |
2013年 | 134篇 |
2012年 | 89篇 |
2011年 | 116篇 |
2010年 | 78篇 |
2009年 | 69篇 |
2008年 | 121篇 |
2007年 | 127篇 |
2006年 | 119篇 |
2005年 | 125篇 |
2004年 | 136篇 |
2003年 | 126篇 |
2002年 | 145篇 |
2001年 | 34篇 |
2000年 | 34篇 |
1999年 | 43篇 |
1998年 | 31篇 |
1997年 | 30篇 |
1996年 | 27篇 |
1995年 | 27篇 |
1994年 | 34篇 |
1993年 | 17篇 |
1992年 | 23篇 |
1991年 | 18篇 |
1990年 | 21篇 |
1989年 | 30篇 |
1988年 | 19篇 |
1987年 | 20篇 |
1986年 | 19篇 |
1985年 | 24篇 |
1984年 | 19篇 |
1983年 | 14篇 |
1982年 | 17篇 |
1981年 | 13篇 |
1980年 | 9篇 |
1978年 | 11篇 |
1977年 | 13篇 |
1976年 | 13篇 |
1975年 | 11篇 |
1971年 | 7篇 |
1969年 | 7篇 |
1968年 | 6篇 |
排序方式: 共有2265条查询结果,搜索用时 15 毫秒
51.
Jia Jeong Toshihiko Toida Yuki Muneta Ichiro Kosiishi Toshio Imanari Robert J. Linhardt Hyung Seok Choi Song Ji Wu Yeong Shik Kim 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2001,130(4)
Acharan sulfate is a glycosaminoglycan (GAG), having the structure →4)-2-acetamido-2-deoxy-α-
-glucopyranose(1→4)-2-sulfo-α-
-idopyranosyluronic acid (1→, isolated from the body of the giant African snail Achatina fulica. This GAG represents 3–5% of the dry weight of this snail's soft body tissues. Frozen sections and polyester wax sections of the snail's body were stained by Alcian blue-periodic acid-Schiff's reagent (PAS) to localize acharan sulfate. Alcian blue staining indicated that GAG was mainly secreted into the outer surface of the body from internal granules. A highly mucous material was collected and treated and the acharan sulfate was recovered by ethanol and cetyl pyridinium chloride precipitation. Crude acharan sulfate was purified by DEAE-Sephacel ion-exchange chromatography. Depolymerization of intact mucus and purified acharan sulfate fractions by heparin lyase II (heparitinase I) from Flavobacterium heparinum produced an unsaturated disaccharide as a major product, establishing the repeating unit of acharan sulfate. These results demonstrate that mucus in the granule and secreted to the outside of the body is composed entirely of acharan sulfate. 相似文献
52.
We previously reported that extracellular sphingomyelinase induces sphingomyelin hydrolysis in osteoblast-like MC3T3-E1 cells and that mitogen-activated protein (MAP) kinases are involved in bone morphogenetic protein (BMP)-4-stimulated osteocalcin synthesis in these cells. In the present study, we investigated whether sphingomyelinase affects BMP-4-stimulated synthesis of osteocalcin in osteoblast-like MC3T3-E1 cells. Sphingomyelinase significantly enhanced the BMP-4-stimulated osteocalcin synthesis. Among sphingomyelin metabolites, C(2)-ceramide enhanced the BMP-4-stimulated osteocalcin synthesis while sphingosine and sphingosine 1-phosphate had little effect on the synthesis. D-erythro-MAPP, an inhibitor of ceramidase, amplified the sphingomyelinase-effect on the osteocalcin synthesis. C(2)-ceramide suppressed the BMP-4-induced phosphorylation of p44/p42 MAP kinase, while having little effect on the phosphorylation of Smad1 and p38 MAP kinase. Taken together, our results strongly suggest that extracellular sphingomyelinase enhances the BMP-stimulated osteocalcin synthesis via ceramide in osteoblasts and that the effect of ceramide is exerted at a point upstream from p44/p42 MAP kinase. 相似文献
53.
Protein N-arginine methyltransferase (PRMT)1 catalyzes arginine methylation in a variety of substrates, although the potential role of PRMT1 in insulin action has not been defined. We therefore investigated the effect of PRMT1-mediated methylation on insulin signaling and glucose uptake in skeletal L6 myotubes. Exposure of L6 myotubes to insulin rapidly induced translocation of PRMT1 and increased its catalytic activity in membrane fraction. Several proteins in the membrane fraction were arginine-methylated after insulin treatment, which were inhibited by pretreatment with an inhibitor of methyltransferase, 5′-deoxy-5′-(methylthio)adenosine (MTA), or a small interfering RNA against PRMT1 (PRMT1-siRNA). Inhibition of arginine methylation with MTA or PRMT1-siRNA diminished later phase of insulin-stimulated tyrosine phosphorylation of insulin receptor (IR) β and IRS-1, association of IRS-1 with p85α subunit of PI3-K, and glucose uptake. Our results suggest that PRMT1-mediated methylation serves as a positive modulator of IR/IRS-1/PI3-K pathway and subsequent glucose uptake in skeletal muscle cells. 相似文献
54.
55.
Michael Meyer Maya Ben‐Yehuda Greenwald Theresa Rauschendorfer Catharina Snger Marko Jukic Haruka Iizuka Fumimasa Kubo Lin Chen David M. Ornitz Sabine Werner 《Journal of cellular and molecular medicine》2020,24(2):1774-1785
Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double‐knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor. 相似文献
56.
To investigate how various concentrations of serum prolactin (PRL) influence the priming effect of luteinizing hormone releasing hormone (LH-RH) on the pituitary gland, 24 women with various blood PRL concentrations received intravenous injections of 100 micrograms of synthetic LH-RH twice at an interval of 60 minutes and their serum LH and follicle-stimulating hormone (FSH) were measured and analysed. In the follicular phase with a normal PRL concentration (PRL less than 20 ng/ml, n = 6), marked first peaks of the two hormones following the first LH-RH stimulation and enhanced second peaks after the second LH-RH administration were observed, indicating a typical priming effect of LH-RH on gonadotropins, though the second response of FSH was more moderate than that of LH. In hyperprolactinemia, in which the serum PRL concentration was higher than 70 ng/ml (n = 13), the basal concentration of gonadotropins was not significantly changed but the priming effect of LH-RH on LH and FSH was significantly decreased (p less than 0.01). No marked second peaks of LH and FSH were observed, suggesting an inhibitory effect of hyperprolactinemia on the second release of LH and FSH. In contrast, this effect was restored in a group of women whose serum PRL concentration was between 30 and 50 ng/ml (n = 5). Furthermore, enhanced second peaks of both LH and FSH were noted after successful bromocriptine therapy reduced hyperprolactinemia (PRL greater than 70 ng/ml) to less than 25 ng/ml (n = 5).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
57.
In yeast, the N-linked oligosaccharide modification in the Golgi apparatus is initiated by alpha1,6-mannosyltransferase (encoded by the OCH1 gene) with the addition of mannose to the Man(8)GlcNAc(2) or Man(9)GlcNAc(2) endoplasmic reticulum intermediates. In order to characterize its enzymatic properties, the soluble form of the recombinant Och1p was expressed in the methylotrophic yeast Pichia pastoris as a secreted protein, after truncation of its transmembrane region and fusion with myc and histidine tags at the C-terminus, and purified using a metal chelating column. The enzymatic reaction was performed using various kinds of pyridylaminated (PA) sugar chains as acceptor, and the products were separated by high performance liquid chromatography. The recombinant Och1p efficiently transferred a mannose to Man(8)GlcNAc(2)-PA and Man(9)GlcNAc(2)-PA acceptors, while Man(5)GlcNAc(2)-PA, which completely lacks alpha1,2-linked mannose residues, was not used as an acceptor. At high enzyme concentrations, a novel product was detected by HPLC. Analysis of the product revealed that a second mannose was attached at the 6-O-position of alpha1,3-linked mannose branching from the alpha1,6-linked mannose that is attached to beta1,4-linked mannose of Man(10)GlcNAc(2)-PA produced by the original activity of Och1p. Our results indicate that Och1p has the potential to transfer two mannoses from GDP-mannose, and strictly recognizes the overall structure of high mannose type oligosaccharide. 相似文献
58.
Yuusuke Maruyama Toshihiko Ogura Kazuhiro Mio Kenta Kato Takeshi Kaneko Shigeki Kiyonaka Yasuo Mori Chikara Sato 《The Journal of biological chemistry》2009,284(20):13676-13685
The Ca2+ release-activated Ca2+ channel is a
principal regulator of intracellular Ca2+ rise, which conducts
various biological functions, including immune responses. This channel,
involved in store-operated Ca2+ influx, is believed to be composed
of at least two major components. Orai1 has a putative channel pore and
locates in the plasma membrane, and STIM1 is a sensor for luminal
Ca2+ store depletion in the endoplasmic reticulum membrane. Here we
have purified the FLAG-fused Orai1 protein, determined its tetrameric
stoichiometry, and reconstructed its three-dimensional structure at 21-Å
resolution from 3681 automatically selected particle images, taken with an
electron microscope. This first structural depiction of a member of the Orai
family shows an elongated teardrop-shape 150Å in height and 95Å in
width. Antibody decoration and volume estimation from the amino acid sequence
indicate that the widest transmembrane domain is located between the round
extracellular domain and the tapered cytoplasmic domain. The cytoplasmic
length of 100Å is sufficient for direct association with STIM1. Orifices
close to the extracellular and intracellular membrane surfaces of Orai1 seem
to connect outside the molecule to large internal cavities.Ca2+ is an intracellular second messenger that plays important
roles in various physiological functions such as immune response, muscle
contraction, neurotransmitter release, and cell proliferation. Intracellular
Ca2+ is mainly stored in the endoplasmic reticulum
(ER).2 This ER system
is distributed through the cytoplasm from around the nucleus to the cell
periphery close to the plasma membrane. In non-excitable cells, the ER
releases Ca2+ through the inositol 1,4,5-trisphosphate
(IP3) receptor channel in response to various signals, and the
Ca2+ store is depleted. Depletion of Ca2+ then induces
Ca2+ influx from outside the cell to help in refilling the
Ca2+ stores and to continue Ca2+ rise for several
minutes in the cytoplasm (1,
2). This Ca2+ influx
was first proposed by Putney
(3) and was named
store-operated Ca2+ influx. In the immune system, store-operated
Ca2+ influx is mainly mediated by the Ca2+
release-activated Ca2+ (CRAC) current, which is a highly
Ca2+-selective inwardly rectified current with low conductance
(4,
5). Pathologically, the loss of
CRAC current in T cells causes severe combined immunodeficiency
(6) where many Ca2+
signal-dependent gene expressions, including cytokines, are interrupted
(7). Therefore, CRAC current is
necessary for T cell functions.Recently, Orai1 (also called CRACM1) and STIM1 have been physiologically
characterized as essential components of the CRAC channel
(8–12).
They are separately located in the plasma membrane and in the ER membrane;
co-expression of these proteins presents heterologous CRAC-like currents in
various types of cells (10,
13–15).
Both of them are shown to be expressed ubiquitously in various tissues
(16–18).
STIM1 senses Ca2+ depletion in the ER through its EF hand motif
(19) and transmits a signal to
Orai1 in the plasma membrane. Although Orai1 is proposed as a regulatory
component for some transient receptor potential canonical channels
(20,
21), it is believed from the
mutation analyses to be the pore-forming subunit of the CRAC channel
(8,
22–24).
In the steady state, both Orai1 and STIM1 molecules are dispersed in each
membrane. When store depletion occurs, STIM1 proteins gather into clusters to
form puncta in the ER membrane near the plasma membrane
(11,
19). These clusters then
trigger the clustering of Orai1 in the plasma membrane sites opposite the
puncta (25,
26), and CRAC channels are
activated (27).Orai1 has two homologous genes, Orai2 and Orai3
(8). They form the Orai family
and have in common the four transmembrane (TM) segments with relatively large
N and C termini. These termini are demonstrated to be in the cytoplasm,
because both N- and C-terminally introduced tags are immunologically detected
only in the membrane-permeabilized cells
(8,
9). The subunit stoichiometry
of Orai1 is as yet controversial: it is believed to be an oligomer, presumably
a dimer or tetramer even in the steady state
(16,
28–30).Despite the accumulation of biochemical and electrophysiological data,
structural information about Orai1 is limited due to difficulties in
purification and crystallization. In this study, we have purified Orai1 in its
tetrameric form and have reconstructed the three-dimensional structure from
negatively stained electron microscopic (EM) images. 相似文献
59.
Shibasaki H Nakayama H Furuta T Kasuya Y Tsuchiya M Soejima A Yamada A Nagasawa T 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2008,870(2):164-169
Individual variability of the pharmacokinetics of prednisolone based on the unbound concentration in plasma is of significant clinical consideration. The unbound concentrations of prednisolone were measured in 10 patients with nephrotic syndrome, two patients with systemic lupus erythematosus, and one patient with dermatomyositis by examining protein bindings of prednisolone on one or more occasions during prednisolone treatment. In this study, plasma concentrations of prednisolone, prednisone, cortisol, and cortisone were simultaneously analyzed by GC-MS by using stable isotope-labeled internal standards. Equilibrium dialysis was employed to accurately estimate the unbound fractions of prednisolone in plasma. The unbound fraction of prednisolone changed depending on plasma total prednisolone concentration and plasma albumin concentration. The unbound fraction of prednisolone (Y) is calculated: Y=(-0.0101x' + 0.0736) x + 10.23, where x' is the plasma albumin concentration and x is the total prednisolone concentration. The estimated concentrations of unbound prednisolone by using the above equation were in good agreement with the measured concentrations of unbound prednisolone. Since the protein binding of prednisolone did not change in the presence of prednisone (114.0 ng/ml), it appeared that prednisone produced from the therapeutic dose of prednisolone did not affect the unbound fraction of prednisolone. 相似文献
60.