首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   506篇
  免费   24篇
  国内免费   2篇
  2021年   5篇
  2019年   6篇
  2018年   9篇
  2017年   8篇
  2016年   7篇
  2015年   20篇
  2014年   17篇
  2013年   35篇
  2012年   35篇
  2011年   42篇
  2010年   16篇
  2009年   28篇
  2008年   42篇
  2007年   33篇
  2006年   31篇
  2005年   39篇
  2004年   35篇
  2003年   29篇
  2002年   27篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有532条查询结果,搜索用时 984 毫秒
91.
Molecular and Cellular Biochemistry - Recently, we discovered that transient receptor potential ankyrin1 channel (TRPA1) is highly expressed in human and rat enterochromaffin (EC) cells, and those...  相似文献   
92.
Particulate methane monooxygenase (pMMO), a copper-containing membrane protein, catalyzes methane hydroxylation under aerobic conditions. We found that the activity of pMMO was increased by catalase, implying that hydrogen peroxide (H2O2) is generated by pMMO with duroquinol, an electron donor for pMMO, and that the generated H2O2 inhibits pMMO activity. In addition, reversible inhibition of pMMO with H2O2 was observed upon treatment of pMMO with H2O2 followed by the addition of catalase, and H2O2 formation by pMMO with duroquinol was detected using a fluorescence probe. The redox behavior of type 2 copper in pMMO measured by the electron paramagnetic resonance revealed that H2O2 re-oxidizes the type 2 copper in pMMO reduced with duroquinol.  相似文献   
93.
The association of the Ser326Cys polymorphism of the 8-oxoguanine glycosylase 1 (OGG1) gene with type 2 diabetes was examined using a Japanese population (n (M/W): 4585 (2085/2500); age: 62.6 ± 10.9 years). HbA1c levels and frequency of diabetic subjects were significantly higher in subjects with genotypes with Cys allele than in those without (p = 0.032 and 0.037, respectively). Multiple logistic regression analysis showed that genotypes with Cys allele were significantly associated with diabetes (OR: 1.32, p = 0.0289). In subjects whose glucose tolerance was classified by FPG and 2-h PG (n = 1.634), the association was more substantial (genotypes with Cys allele vs. without, OR: 1.70, p = 0.0059; genotypes Cys/Cys vs. Ser/Ser, OR: 2.19, p = 0.0008). In subjects with genotype Ser/Ser, the insulin secretion index, HOMA-β, increased in the subjects with glucose intolerance and decreased in the subjects with diabetes, while, in subjects with genotypes Ser/Cys + Cys/Cys, HOMA-β decreased as the glucose tolerance progressed (p for trend = 0.010).  相似文献   
94.
Neuronal axons are guided by attractive and repulsive cues in their local environment. Since the identification of the repulsive guidance molecule (RGM) a (RGMa) as an axon repellent in the visual system, diverse functions, as part of the developing and adult central nervous system (CNS), have been ascribed to it. The binding of RGMa to its receptor neogenin has been shown to induce RhoA activation, leading to inhibitory/repulsive behavior and the collapse of the neuronal growth cone. In this paper, we provide evidence to suggest the involvement of RGMb, another member of the RGM family, in the rat CNS. RGMb inhibits neurite outgrowth in postnatal cerebellar granule neurons (CGNs) in vitro. RGMb is expressed by oligodendrocytes and neurons in the adult rat CNS, and the expression of this molecule is upregulated around the site of spinal cord injury. RGMb is present in myelin isolated from an adult rat brain. RGMb and neogenin are coexpressed in CGNs and entorhinal cortex neurons. These findings suggest that RGMb is a myelin-derived inhibitor of axon growth in the CNS. Inhibition of RGMb may provide an alternative approach for the treatment of spinal injuries.  相似文献   
95.
Neuronal axons are guided by attractive and repulsive cues in their local environment. Because the repulsive guidance molecule A (RGMa) was originally identified as an axon repellent in the visual system, diverse functions in the developing and adult central nervous system have been ascribed to it. RGMa binding to its receptor neogenin induces RhoA activation, leading to inhibitory/repulsive behavior and collapse of the neuronal growth cone. However, the precise mechanisms that regulate RhoA activation are poorly understood. In this study, we show that Unc5B, a member of the netrin receptor family, interacts with neogenin as a coreceptor for RGMa. Moreover, leukemia-associated guanine nucleotide exchange factor (LARG) associates with Unc5B to transduce the RhoA signal. Focal adhesion kinase (FAK) is involved in RGMa-induced tyrosine phosphorylation of LARG as well as RhoA activation. These findings uncover the molecular basis for diverse functions mediated by RGMa.  相似文献   
96.
We examined the expression of the major H2S-producing enzymes, cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). CBS was ubiquitously distributed in the mouse pancreas, but CSE was found only in the exocrine. Freshly isolated islets expressed CBS, while CSE was faint. However, high glucose increased the CSE expression in the beta-cells. l-Cysteine or NaHS suppressed islet cell apoptosis with high glucose, and increased glutathione content in MIN6 beta-cells. Pretreatment with l-cysteine improved the secretory responsiveness following stimulation with glucose. The CSE inhibitor dl-propargylglycine antagonized these l-cysteine effects. We suggest HS may function as an ‘intrinsic brake’ which protects beta-cells from glucotoxicity.  相似文献   
97.
Caveolae are plasma membrane domains involved in the uptake of certain pathogens and toxins. Internalization of some cell surface integrins occurs via caveolae suggesting caveolae may play a crucial role in modulating integrin‐mediated adhesion and cell migration. Here we demonstrate a critical role for gangliosides (sialo‐glycosphingolipids) in regulating caveolar endocytosis in human skin fibroblasts. Pretreatment of cells with endoglycoceramidase (cleaves glycosphingolipids) or sialidase (modifies cell surface gangliosides and glycoproteins) selectively inhibited caveolar endocytosis by >70%, inhibited the formation of plasma membrane domains enriched in sphingolipids and cholesterol (‘lipid rafts'), reduced caveolae and caveolin‐1 at the plasma membrane by approximately 80%, and blunted activation of β1‐integrin, a protein required for caveolar endocytosis in these cells. These effects could be reversed by a brief incubation with gangliosides (but not with asialo‐gangliosides or other sphingolipids) at 10°C, suggesting that sialo‐lipids are critical in supporting caveolar endocytosis. Endoglycoceramidase treatment also caused a redistribution of focal adhesion kinase, paxillin, talin, and PIP Kinase Iγ away from focal adhesions. The effects of sialidase or endoglycoceramidase on membrane domains and the distribution of caveolin‐1 could be recapitulated by β1‐integrin knockdown. These results suggest that both gangliosides and β1‐integrin are required for maintenance of caveolae and plasma membrane domains.  相似文献   
98.
Myelin-associated glycoprotein (MAG) and Nogo are potent inhibitors of neurite outgrowth from a variety of neurons, and they have been identified as possible components of the central nervous system myelin that prevents axonal regeneration in the adult vertebrate central nervous system. The activation of RhoA and Rho-kinase is reported to be an essential part of the signaling mechanism of these proteins. Here, we report that the collapsing response mediator protein-2 (CRMP-2) is phosphorylated by a Rho-kinase-dependent mechanism downstream of MAG or Nogo-66. The overexpression of the nonphosphorylated form of CRMP-2 at threonine 555, which is the phosphorylation site for Rho-kinase, counteracts the inhibitory effect of MAG on the postnatal cerebellar neurons. Additionally, the expression of the dominant negative form of CRMP-2 or knockdown of the gene using small interference RNA (siRNA) mimics the effect of MAG in vitro. Consistent with the function of CRMP-2, which promotes microtubule assembly, microtubule levels are down-regulated in the cerebellar neurons that are stimulated with MAG in vitro. Reduction in the density of microtubules is also observed in the injured axons following the spinal cord injury, and this effect depends on the Rho-kinase activity. Our data suggest the important roles of CRMP-2 and microtubules in the inhibition of the axon regeneration by the myelin-derived inhibitors.  相似文献   
99.
A preceding paper suggested 81 candidates of stage-specifically expressed proteins for either stage IA or IIIA by global shotgun proteomics and spectral counting. Six proteins, a subset of these proteins, were chosen for a further verification study since they are potentially soluble and/or secretory, which nature is convenient for detecting them in blood in clinical practice. The multiple-reaction monitoring (MRM) quantitative analysis suggested that napsin-A and anterior gradient protein 2 homolog (hAG-2) out of the 6 candidates would be useful for determining stage IA or IIIA and are related to metastasis. In the study we noted that stage IIIA patients with better outcome showed napsin-A profiles similar to that of stage IA patients. We therefore examined 14 additional patients for analysis, which contained the IA-stage patients of poorer outcome and the IIIA-stage patients of better outcome. The MRM analysis of napsin-A for all patients suggests that napsin-A contents correlate with better outcome in stage IA. This and discovery studies demonstrate that direct isolation of tumor cells alone by laser microdissection (LMD) greatly reduces complexity on comprehensive analyses, and that MRM mass spectrometry using the endogenous internal standard is a feasible technology for quantitative verification of target proteins in formalin-fixed paraffin embedded (FFPE) tissues.  相似文献   
100.
Ependymal cells have been suggested to act as neural stem cells and exert beneficial effects after spinal cord injury (SCI). However, the molecular mechanism underlying ependymal cell regulation after SCI remains unknown. To examine the possible effect of IL-17A on ependymal cell proliferation after SCI, we locally administrated IL-17A neutralizing antibody to the injured spinal cord of a contusion SCI mouse model, and revealed that IL-17A neutralization promoted ependymal cell proliferation, which was paralleled by functional recovery and axonal reorganization of both the corticospinal tract and the raphespinal tract. Further, to test whether ependymal cell-specific manipulation of IL-17A signaling is enough to affect the outcomes of SCI, we generated ependymal cell-specific conditional IL-17RA-knockout mice and analyzed their anatomical and functional response to SCI. As a result, conditional knockout of IL-17RA in ependymal cells enhanced both axonal growth and functional recovery, accompanied by an increase in mRNA expression of neurotrophic factors. Thus, Ependymal cells may enhance the regenerative process partially by secreting neurotrophic factors, and IL-17A stimulation negatively regulates this beneficial effect. Molecular manipulation of ependymal cells might be a viable strategy for improving functional recovery.Subject terms: Neuroimmunology, Spinal cord injury  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号