首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   20篇
  国内免费   2篇
  2021年   5篇
  2019年   5篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   19篇
  2014年   17篇
  2013年   35篇
  2012年   34篇
  2011年   40篇
  2010年   14篇
  2009年   27篇
  2008年   42篇
  2007年   31篇
  2006年   31篇
  2005年   38篇
  2004年   33篇
  2003年   29篇
  2002年   25篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有504条查询结果,搜索用时 15 毫秒
441.
Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR-neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH-pi interactions in the Ls-AChBP-CTD complex than in the Ls-AChBP-IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs.  相似文献   
442.

Background  

Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes.  相似文献   
443.
A cold-responsive chitinase gene, BiCHT1, was isolated from bromegrass (Bromus inermis) 'Manchar' suspension cells. BiCHT1 messenger RNA was detected at low levels in nonstressed bromegrass cells, whereas its accumulation was induced by incubation at 10 degrees C and 4 degrees C as detected by northern- and western-blot analyses. BiCHT1 was highly homologous to rye CHT9, known to encode an antifreeze protein. BiCHT1 was overexpressed in Escherichia coli and bromegrass cells using genetic transformation procedures. BiCHT1 products expressed in both systems had chitinase activity, but the expressed proteins did not affect the growth of ice crystals in any conditions tested. Besides cold stress, the expression of the BiCHT1 gene was up-regulated by exposure to 35 degrees C, but not by salt or osmotic stress, abscisic acid, or ethephon. BiCHT1 messenger RNA did not accumulate in response to methyl jasmonate and salicylic acid, but was slightly increased by prolonged culture at 25 degrees C and only transiently by chitin. Antifreeze activity detected in the culture medium was induced at 4 degrees C but only slightly at 10 degrees C. It was also induced by ethephon treatment, but not by abscisic acid, chitin, or prolonged incubation at 25 degrees C. The results of transgenics and expression analyses suggest that the BiCHT1 product is a major protein with chitinase activity secreted in the medium of cold-treated cells and is unlikely to be responsible for the antifreeze activity detected in the culture medium.  相似文献   
444.
The cerebellum is a brain structure involved in the coordination, control and learning of movements, and elucidation of its function is an important issue. Japanese scholars have made seminal contributions in this field of neuroscience. Electrophysiological studies of the cerebellum have a long history in Japan since the pioneering works by Ito and Sasaki. Elucidation of the basic circuit diagram of the cerebellum in the 1960s was followed by the construction of cerebellar network theories and finding of their neural correlates in the 1970s. A theoretically predicted synaptic plasticity, long-term depression (LTD) at parallel fibre to Purkinje cell synapse, was demonstrated experimentally in 1982 by Ito and co-workers. Since then, Japanese neuroscientists from various disciplines participated in this field and have made major contributions to elucidate molecular mechanisms underlying LTD. An important pathway for LTD induction is type-1 metabotropic glutamate receptor (mGluR1) and its downstream signal transduction in Purkinje cells. Sugiyama and co-workers demonstrated the presence of mGluRs and Nakanishi and his pupils identified the molecular structures and functions of the mGluR family. Moreover, the authors contributed to the discovery and elucidation of several novel functions of mGluR1 in cerebellar Purkinje cells. mGluR1 turned out to be crucial for the release of endocannabinoid from Purkinje cells and the resultant retrograde suppression of transmitter release. It was also found that mGluR1 and its downstream signal transduction in Purkinje cells are indispensable for the elimination of redundant synapses during post-natal cerebellar development. This article overviews the seminal works by Japanese neuroscientists, focusing on mGluR1 signalling in cerebellar Purkinje cells.  相似文献   
445.
Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the visual system [T. Yamashita, B.K. Mueller, K. Hata, Neogenin and RGM signaling in the central nervous system, Curr. Opin. Neurobiol. 17 (2007) 29-34]. Functional studies in Xenopus and chick embryos have revealed the roles of RGM in axon guidance and laminar patterning, while those in mouse embryos have demonstrated its function in regulating the cephalic neural tube closure. Importantly, RGM inhibition enhanced the growth of injured axons and promoted functional recovery after spinal cord injury in rats. Here, we identified two RGMa-derived peptides that functioned as antagonists against RGMa. The peptides studied in vitro dose-dependently suppressed the neurite growth inhibition and growth cone collapse induced by RGMa. Thus, these peptides are promising reagents to treat injuries of the central nervous system.  相似文献   
446.
氨肽酶H(Aminopeptidase H, APH))是生物组织内一种常见的氨基内肽酶, 但因为天然材料中含量很低, 基本无法深入研究其催化机理、功能与结构的关系及其在生物体内的确切功能。从鸡肝组织克隆了APH的全基因序列, 并把该序列亚克隆到载体pET22b(+)上, 然后转化大肠杆菌Rosetta(DE3), 构建了APH的表达菌株。该菌株经IPTG诱导, 在SDS-PAGE上明显出现一条与天然APH理论分子量一致的新增蛋白带, 该条带的浓度随着表达时间的延长逐渐加深; 6 h基本达到平衡, 此时重组蛋白占总蛋白的16.7%, 表达水平高达94.7 mg/L。对表达产物进行了活性检测、纯化和酶学性质分析, 发现重组蛋白在亚基构成, 热稳定性, 最适pH等方面与天然APH基本相同, 据此可以确认表达产物确实是APH, 发酵液总活力达到1636 u/L。这些结果为APH的催化机理及其在生物体内的功能的阐明奠定了重要的物质基础。  相似文献   
447.
448.
Elevational diversity gradients (EDGs) of vegetation are shaped by the evolutionary histories of plants as well as by ecological factors. However, few studies of EDGs have focused on the roles of phylogenetic constraints and the effects of complicated interactions among environmental factors. Here, we examine the direct and indirect effects of environmental factors in forming EDGs of forest understory vegetation. The study plots were selected along elevational gradients in cool-temperate and sub-alpine forests in the University of Tokyo Chichibu Forest of central Japan. Tree seedlings and herbs were identified, and environmental factors (elevation, soil temperature, soil pH, soil CN ratio, forest type, basal area, canopy openness, and slope) were measured in these plots. Structural equation modeling (SEM) including taxonomic and phylogenetic diversity was used to consider the causal relationships between environmental conditions and the diversity of understory vegetation. In addition, phylogenetic signals in habitat requirements were tested. The taxonomic and phylogenetic diversities of tree seedlings increased monotonically with elevation, and the same pattern was found for the taxonomic diversity of herbs. The SEM indicated that both the taxonomic and phylogenetic diversity of tree seedlings were most affected by soil properties, although the phylogenetic diversity of herbs was determined by light conditions. These results highlight the importance of environmental filtering by soil properties in shaping EDGs of tree seedlings. This study implies that phylogenetic constraints in the adaptation to soil properties should be considered when predicting changes in EDGs under environmental fluctuations.  相似文献   
449.
Multiple signals regulate axon regeneration through the nogo receptor complex   总被引:10,自引:0,他引:10  
Several myelin-derived proteins have been identified as components of central nervous system (CNS) myelin, which prevents axonal regeneration in the adult vertebrate CNS. The discovery of the receptor for these proteins was a major step toward understanding the failure of axon regeneration. The receptor complex consists of at least three elements: the p75 receptor (p75NTR), the Nogo receptor and LINGO-1. Downstream from the receptor complex, RhoA activation has been shown to be a key element of the signaling mechanism of these proteins. Rho activation arrests axon growth, and blocking Rho activation promotes axon regeneration in vivo. Recent studies have identified conventional protein kinase C as an additional necessary component for axon growth inhibition. Possible crosstalk downstream of these signals should be explored to clarify all the inhibitory signals and may provide an efficient molecular target against injuries to the CNS.  相似文献   
450.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号