首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   29篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   8篇
  2018年   9篇
  2017年   7篇
  2016年   14篇
  2015年   13篇
  2014年   27篇
  2013年   42篇
  2012年   43篇
  2011年   50篇
  2010年   24篇
  2009年   22篇
  2008年   40篇
  2007年   33篇
  2006年   41篇
  2005年   37篇
  2004年   51篇
  2003年   39篇
  2002年   49篇
  2000年   2篇
  1999年   7篇
  1998年   10篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1993年   2篇
  1992年   6篇
  1991年   1篇
  1990年   6篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   6篇
  1983年   8篇
  1982年   13篇
  1981年   6篇
  1980年   8篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1969年   1篇
  1967年   1篇
  1960年   1篇
  1959年   1篇
排序方式: 共有700条查询结果,搜索用时 31 毫秒
61.
Ferredoxin (Fd) and Fd-NADP(+) reductase (FNR) are redox partners responsible for the conversion between NADP(+) and NADPH in the plastids of photosynthetic organisms. Introduction of specific disulfide bonds between Fd and FNR by engineering cysteines into the two proteins resulted in 13 different Fd-FNR cross-linked complexes displaying a broad range of activity to catalyze the NADPH-dependent cytochrome c reduction. This variability in activity was thought to be mainly due to different levels of intramolecular electron transfer activity between the FNR and Fd domains. Stopped-flow analysis revealed such differences in the rate of electron transfer from the FNR to Fd domains in some of the cross-linked complexes. A group of the cross-linked complexes with high cytochrome c reduction activity comparable to dissociable wild-type Fd/FNR was shown to assume a similar Fd-FNR interaction mode as in the native Fd:FNR complex by analyses of NMR chemical shift perturbation and absorption spectroscopy. However, the intermolecular electron transfer of these cross-linked complexes with two Fd-binding proteins, nitrite reductase and photosystem I, was largely inhibited, most probably due to steric hindrance by the FNR moiety linked near the redox center of the Fd domain. In contrast, another group of the cross-linked complexes with low cytochrome c reduction activity tends to mediate higher intermolecular electron transfer activity. Therefore, reciprocal relationship of intramolecular and intermolecular electron transfer abilities was conferred by the linkage of Fd and FNR, which may explain the physiological significance of the separate forms of Fd and FNR in chloroplasts.  相似文献   
62.
We previously studied antioxidant profiles in the plasma of hibernating Syrian hamsters and found a transient increase of a superoxide radical-scavenging activity during the arousal phase. In this report, we purified and identified the high molecular weight superoxide dismutase (SOD)-like factor from the plasma of arousing hamsters. The cyanide-sensitive 240 kDa SOD-like factor showed a significant homology to mammalian extracellular SOD (EC-SOD) reported, although the molecular mass of EC-SOD was 135 kDa. The cDNA cloning revealed that the 240 kDa SOD-like factor was identical to the hamster ortholog of EC-SOD. It consisted of 245 amino acid residues including a signal sequence of 20 amino acid residues. Five cysteine residues that would participate in inner- and inter-subunit bonds were well conserved among species. Interestingly, there were four potential N-glycosylation sites in hamster EC-SOD, whereas there is only one site in other species. The amino acid sequence analysis indicated that three of the four sites were modified. These results suggest that the anomalistically high molecular weight of hamster EC-SOD is ascribed, at least in part, to the addition of extra sugar chains. Furthermore, results obtained here also propose the involvement of EC-SOD in the antioxidative defense of hibernating hamsters.  相似文献   
63.
Autoantibodies to myeloperoxidase (MPO) are a subset of anti-neutrophil cytoplasmic antibody (ANCA, MPO-ANCA) detected in the sera of some patients with primary systemic vasculitis. The titer of MPO-ANCA does not always reflect disease activity and this inconsistency may be attributable to differences in epitopic specificity by MPO-ANCA among various patients with vasculitis. Epitope analysis may also explain the occurrence of MPO-ANCA in different vasculitic syndromes. We screened the sera of 148 MPO-ANCA positive patients from six vasculitic syndromes: rapidly progressive gromerulonephritis (RPGN), microscopic polyangiitis (MPA), idiopathic crescentic glomerulonephritis (I-CrGN), classic polyangiitis nodosa (cPAN), Churg-Strauss syndrome (CSS), Kawasaki disease (KD); and from patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). The sera were collected by the Intractable Vasculitis Research Project Group in Japan. No serum showed epitopes La and Lb of light chain of MPO, and sera with 68.6% of patients showed a positive reaction to one or more epitopes in heavy chain of MPO. Analysis of binding level showed that RPGN, I-CrGN and MPA sera mainly reacted to the Ha epitope at the N-termimus of the MPO heavy chain, CSS sera reacted to Ha and the Hf epitope close to the C-terminus of the MPO heavy chain, KD reacted mainly to Hf, while SLE and RA sera reacted to all epitopes. These results suggest that MPO-ANCA recognizing specific regions of the N-terminus of the MPO H-chain confer an increased risk of vasculitis RPGN, I-CrGN, MPA and CSS. Furthermore, the epitopic specificity of MPO-ANCA differentiates vasculitic from non-vasculitic syndromes associated with MPO-ANCA positivity and differentiates in the cirtain type of vasculitis from various vasculitic syndromes. In particular, vasculitic syndromes associated with kidney involvement had similar epitopic reactivity which suggests that this pattern confers an increased risk of vasculitis.  相似文献   
64.
Escherichia coli phage-shock protein A (PspA), a 25.3 kDa peripheral membrane protein, is induced under the membrane stress conditions and is assumed to help maintain membrane potential. Here, we report that purified PspA, existing as a large oligomer, is really able to suppress proton leakage of the membranes. This was demonstrated for membrane vesicles prepared from the PspA-lacking E. coli mutants, and for membrane vesicles damaged by ethanol and Triton X-100 prepared from the mutant and the wild-type cells. PspA also suppressed proton leakage of damaged liposomes made from E. coli total lipids. Furthermore, we found that PspA bound preferentially to liposomes containing phosphatidylserine and phosphatidylglycerol. All these effects were not observed for monomer PspA that was prepared by refolding of urea-denatured PspA. These results indicate that oligomers of PspA bind to membrane phospholipids and suppress proton leakage.  相似文献   
65.
The bacterial flagellar motor is an elaborate molecular machine that converts ion-motive force into mechanical force (rotation). One of its remarkable features is its swift switching of the rotational direction or speed upon binding of the response regulator phospho-CheY, which causes the changes in swimming that achieve chemotaxis. Vibrio alginolyticus has dual flagellar systems: the Na(+)-driven polar flagellum (Pof) and the H(+)-driven lateral flagella (Laf), which are used for swimming in liquid and swarming over surfaces respectively. Here we show that both swimming and surface-swarming of V. alginolyticus involve chemotaxis and are regulated by a single CheY species. Some of the substitutions of CheY residues conserved in various bacteria have different effects on the Pof and Laf motors, implying that CheY interacts with the two motors differently. Furthermore, analyses of tethered cells revealed that their switching modes are different: the Laf motor rotates exclusively counterclockwise and is slowed down by CheY, whereas the Pof motor turns both counterclockwise and clockwise, and CheY controls its rotational direction.  相似文献   
66.
Gluconacetobacter xylinus (formerly Acetobacter xylinum and presently Komagataeibacter medellinensis) is known to produce cellulose as a stable pellicle. However, it is also well known to lose this ability very easily. We investigated the on and off mechanisms of cellulose producibility in two independent cellulose-producing strains, R1 and R2. Both these strains were isolated through a repetitive static culture of a non-cellulose-producing K. medellinensis NBRC 3288 parental strain. Two cellulose synthase operons, types I and II, of this strain are truncated by the frameshift mutation in the bcsBI gene and transposon insertion in the bcsCII gene, respectively. The draft genome sequencing of R1 and R2 strains revealed that in both strains the bcsBI gene was restored by deletion of a nucleotide in its C-rich region. This result suggests that the mutations in the bcsBI gene are responsible for the on and off mechanism of cellulose producibility. When we looked at the genomic DNA sequences of other Komagataeibacter species, several non-cellulose-producing strains were found to contain similar defects in the type I and/or type II cellulose synthase operons. Furthermore, the phylogenetic relationship among cellulose synthase genes conserved in other bacterial species was analyzed. We observed that the cellulose genes in the Komagataeibacter shared sequence similarities with the γ-proteobacterial species but not with the α-proteobacteria and that the type I and type II operons could be diverged from a same ancestor in Komagataeibacter.  相似文献   
67.
2,5-Diketo-d-gluconate (2,5DKG) is a compound that can be the intermediate for d-tartrate and also vitamin C production. Although Gluconobacter oxydans NBRC3293 produces 2,5DKG from d-glucose via d-gluconate and 2-keto-d-gluconate (2KG), with accumulation of the product in the culture medium, the efficiency of 2,5DKG production is unsatisfactory because there is a large amount of residual d-gluconate at the end of the biotransformation process. Oxidation of 2KG to 2,5DKG is catalyzed by a membrane-bound flavoprotein-cytochrome c complex: 2-keto-gluconate dehydrogenase (2KGDH). Here, we studied the kgdSLC genes encoding 2KGDH in G. oxydans NBRC3293 to improve 2,5DKG production by Gluconobacter spp. The kgdS, kgdL, and kgdC genes correspond to the small, large, and cytochrome subunits of 2KGDH, respectively. The kgdSLC genes were cloned into a broad-host-range vector carrying a DNA fragment of the putative promoter region of the membrane-bound alcohol dehydrogenase gene of G. oxydans for expression in Gluconobacter spp. According to our results, 2KGDH that was purified from the recombinant Gluconobacter cells showed characteristics nearly the same as those reported previously. We also expressed the kgdSLC genes in a mutant strain of Gluconobacter japonicus NBRC3271 (formerly Gluconobacter dioxyacetonicus IFO3271) engineered to produce 2KG efficiently from a mixture of d-glucose and d-gluconate. This mutant strain consumed almost all of the starting materials (d-glucose and d-gluconate) to produce 2,5DKG quantitatively as a seemingly unique metabolite. To our knowledge, this is the first report of a Gluconobacter strain that produces 2,5DKG efficiently and homogeneously.  相似文献   
68.
Selective, high-yield production of 5-keto-D-gluconate (5KGA) from D-glucose by Gluconobacter was achieved without genetic modification. 5KGA production by Gluconobacter suffers byproduct formation of 2-keto-D-gluconate (2KGA). By controlling the medium pH strictly in a range of pH 3.5-4.0, 5KGA was accumulated with 87% conversion yield from D-glucose. The pH dependency of 5KGA formation appeared to be related to that of gluconate oxidizing activity.  相似文献   
69.
We identified the soldier-specific compounds in the Japanese subterranean termite, Reticulitermes speratus, to clarify their ethological roles. Silica gel column chromatography separated one major soldier-specific compound in the hexane fraction accounting for 70-80% of the total amount of the fraction, while cuticular hydrocarbons constituted the rest. We identified the compound as β-selinene by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Comparative GC analyses of the major exocrine glands detected the compound in the soldier's frontal gland. Both soldiers and workers made aggregation to the hexane fraction, as well as to the crushed heads and head extract of the soldiers. They did not aggregate to cuticular hydrocarbons, making it likely that β-selinene was the aggregation pheromone in this species. The opportunistic predator of this termite, Lasius japonicus, was also attracted to the compounds. The ant workers, therefore, would use the termite aggregation pheromone as a kairomone for hunting them.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号