首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3153篇
  免费   172篇
  3325篇
  2022年   20篇
  2021年   40篇
  2020年   19篇
  2019年   28篇
  2018年   27篇
  2017年   40篇
  2016年   49篇
  2015年   96篇
  2014年   105篇
  2013年   189篇
  2012年   152篇
  2011年   162篇
  2010年   101篇
  2009年   112篇
  2008年   135篇
  2007年   146篇
  2006年   136篇
  2005年   158篇
  2004年   135篇
  2003年   147篇
  2002年   134篇
  2001年   94篇
  2000年   110篇
  1999年   84篇
  1998年   39篇
  1997年   32篇
  1996年   33篇
  1995年   36篇
  1994年   33篇
  1993年   28篇
  1992年   77篇
  1991年   65篇
  1990年   48篇
  1989年   51篇
  1988年   49篇
  1987年   48篇
  1986年   45篇
  1985年   37篇
  1984年   25篇
  1983年   39篇
  1982年   23篇
  1981年   18篇
  1980年   21篇
  1979年   21篇
  1978年   12篇
  1976年   18篇
  1975年   14篇
  1973年   13篇
  1970年   9篇
  1969年   12篇
排序方式: 共有3325条查询结果,搜索用时 15 毫秒
21.
Peptide:N-glycanase (PNGase) is the deglycosylating enzyme, which releases N-linked glycan chains from N-linked glycopeptides and glycoproteins. Recent studies have revealed that the cytoplasmic PNGase is involved in the degradation of misfolded/unassembled glycoproteins. This enzyme has a Cys, His, and Asp catalytic triad, which is required for its enzymatic activity and can be inhibited by "free" N-linked glycans. These observations prompted us to investigate the possible use of haloacetamidyl derivatives of N-glycans as potent inhibitors and labeling reagents of this enzyme. Using a cytoplasmic PNGase from budding yeast (Png1), Man9GlcNAc2-iodoacetoamide was shown to be a strong inhibitor of this enzyme. The inhibition was found to be through covalent binding of the carbohydrate to a single Cys residue on Png1, and the binding was highly selective. The mutant enzyme in which Cys191 of the catalytic triad was changed to Ala did not bind to the carbohydrate probe, suggesting that the catalytic Cys is the binding site for this compound. Precise determination of the carbohydrate attachment site by mass spectrometry clearly identified Cys191 as the site of covalent attachment. Molecular modeling of N,N'-diacetylchitobiose (chitobiose) binding to the protein suggests that the carbohydrate binding site is distinct from but adjacent to that of Z-VAD-fmk, a peptide-based inhibitor of this enzyme. These results suggest that cytoplasmic PNGase has a separate binding site for chitobiose and other carbohydrates, and haloacetamide derivatives can irreversibly inhibit that catalytic Cys in a highly specific manner.  相似文献   
22.
Resveratrol (3,4',5-trihydroxystilbene), a polyphenolic compound found in mulberries, grapes, and red wine, has received considerable attention because of its apparent protective effects against various degenerative diseases due to its potential antioxidant activities. However, direct evidence for the superoxide-scavenging capacity of resveratrol is lacking in literature. In this study, electron paramagnetic resonance spectroscopy in combination with 5-(diethoxyphosphoryl)-5-methylpyrroline-N-oxide (DEPMPO)-spin trapping technique was utilized to determine the ability of resveratrol in scavenging superoxide anions generated from both potassium superoxide and the xanthine oxidase/xanthine system. We have demonstrated here for the first time that the presence of resveratrol resulted in decreased formation of DEPMPO-superoxide adduct (DEPMPO-OOH) in both the potassium superoxide and xanthine oxidase/xanthine systems, indicating that resveratrol could directly scavenge superoxide anions. The inhibition of DEPMPO-OOH in the xanthine oxidase/xanthine system, however, was found to be much potent as compared to that observed in potassium superoxide system. It was further shown that resveratrol could also directly inhibit xanthine oxidase activity as assessed by oxygen consumption and formation of uric acid. Taken together, the dual role of resveratrol in directly scavenging superoxide and inhibiting its generation via xanthine oxidase reported in this study may explain, at least in part, the protective role of this compound against oxidative injury in various disease processes.  相似文献   
23.
24.
25.
Poly(sarcosine) displayed on polymeric micelle is reported to trigger a T cell‐independent type2 reaction with B1a cells in the mice to produce IgM and IgG3 antibodies. In addition to polymeric micelle, three kinds of vesicles displaying poly(sarcosine) on surface were prepared here to evaluate the amounts and avidities of IgM and IgG3, which were produced in mice, to correlate them with physical properties of the molecular assemblies. The largest amount of IgM was produced after twice administrations of a polymeric micelle of 35 nm diameter ( G1 ). On the other hand, the production amount of IgG3 became the largest after twice administrations of G3 (vesicle of 229 nm diameter) or G4 (vesicle of 85 nm diameter). The augmented avidity of IgG3 after the twice administrations compared with that at the single administration was the highest with G3 . These differences in immune responses are discussed in terms of surface density of poly(sarcosine) chains, nanoparticle size, hydrophobic component of poly(L‐lactic acid) or (Leu‐ or Val‐Aib)n, and membrane elasticity of the nanoparticles. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
26.
27.
28.
The moc1/sds23 gene was isolated to induce sexual development of a sterile strain due to overexpression of adenylate cyclase in Schizosaccharomyces pombe. Here, we studied the functional conservation between moc1/sds23 and its two orthologs SDS23 and SDS24 in Saccharomyces cerevisiae. We observed that the temperature sensitivity, salt tolerance, cell morphology, and sterility of the Deltamoc1 mutant in S. pombe were recovered by expressing either S. cerevisiae SDS23 or SDS24. We found that deletion of both SDS23 and SDS24 resulted in the production of a large vacuole that was reversed by the expression of S. pombe moc1/sds23. In these ways we found that S. pombe Moc1/Sds23 and S. cerevisiae SDS23p or SDS24p are functional homologs. In addition we found that the Deltasds23 Deltasds24 diploid strain reduces cell separation in forming pseudohyphal-like growth in S. cerevisiae. Thus S. pombe moc1/sds23 and S. cerevisiae SDS23 or SDS24 are interchangeable with each other, but their disruptants are phenotypically dissimilar.  相似文献   
29.
Mammalian 3α-hydroxysteroid dehydrogenases (3α-HSDs) have been divided into two types: Cytosolic NADP(H)-dependent 3α-HSDs belonging to the aldo-keto reductase family, and mitochondrial and microsomal NAD+-dependent 3α-HSDs belonging to the short-chain dehydrogenase/reductase family. In this study, we characterized a rat aldo-keto reductase (AKR1C17), whose functions are unknown. The recombinant AKR1C17 efficiently oxidized 3α-hydroxysteroids and bile acids using NAD+ as the preferred coenzyme at an optimal pH of 7.4-9.5, and was inhibited by ketamine and organic anions. The mRNA for AKR1C17 was detected specifically in rat kidney, where the enzyme was more highly expressed as a cytosolic protein than NADP(H)-dependent 3α-HSD (AKR1C9). Thus, AKR1C17 represents a novel NAD+-dependent type of cytosolic 3α-HSD with unique inhibitor sensitivity and tissue distribution. In addition, the replacement of Gln270 and Glu276 of AKR1C17 with the corresponding residues of NADP(H)-dependent 3α-HSD resulted in a switch in favor of NADP+ specificity, suggesting their key roles in coenzyme specificity.  相似文献   
30.
Accumulating evidence suggests that pathogenic TAR DNA-binding protein (TDP)-43 fragments contain a partial RNA-recognition motif domain 2 (RRM2) in amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration. However, the molecular basis for how this domain links to the conformation and function of TDP-43 is unclear. Previous crystal analyses have documented that the RRM2-DNA complex dimerizes under acidic and high salt conditions, mediated by the intermolecular hydrogen bonds of Glu246-Ile249 and Asp247-Asp247. The aims of this study were to investigate the roles of Glu246 and Asp247 in the molecular assembly of RRM2 under physiological conditions, and to evaluate their potential use as markers for TDP-43 misfolding due to the aberrantly exposed dimer interface. Unexpectedly, gel filtration analyses showed that, regardless of DNA interaction, the RRM2 domain remained as a stable monomer in phosphate-buffered saline. Studies using substitution mutants revealed that Glu246 and, especially, Asp247 played a crucial role in preserving the functional RRM2 monomers. Substitution to glycine at Glu246 or Asp247 induced the formation of fibrillar oligomers of RRM2 accompanied by the loss of DNA-binding affinity, which also affected the conformation and the RNA splicing function of full-length TDP-43. A novel monoclonal antibody against peptides containing Asp247 was found to react with TDP-43 inclusions of ALS patients and mislocalized cytosolic TDP-43 in cultured cells, but not with nuclear wild-type TDP-43. Our findings indicate that Glu246 and Asp247 play pivotal roles in the proper conformation and function of TDP-43. In particular, Asp247 should be studied as a molecular target with an aberrant conformation related to TDP-43 proteinopathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号