首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   44篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   11篇
  2015年   14篇
  2014年   14篇
  2013年   29篇
  2012年   27篇
  2011年   37篇
  2010年   16篇
  2009年   14篇
  2008年   34篇
  2007年   46篇
  2006年   26篇
  2005年   33篇
  2004年   27篇
  2003年   24篇
  2002年   23篇
  2001年   14篇
  2000年   12篇
  1999年   10篇
  1998年   5篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1993年   9篇
  1992年   9篇
  1991年   7篇
  1990年   7篇
  1989年   6篇
  1988年   4篇
  1987年   11篇
  1986年   6篇
  1985年   3篇
  1984年   9篇
  1983年   10篇
  1982年   4篇
  1981年   9篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1975年   6篇
  1974年   2篇
  1973年   4篇
  1972年   4篇
  1971年   2篇
  1968年   3篇
排序方式: 共有584条查询结果,搜索用时 31 毫秒
541.
MRL-1237, [1-(4-fluorophenyl)-2-(4-imino-1,4-dihydropyridin-1-yl) methylbenzimidazole hydrochloride], is a potent and selective inhibitor of the replication of enteroviruses. To reveal the target molecule of MRL-1237 in viral replication, we selected spontaneous MRL-1237-resistant poliovirus mutants. Of 15 MRL-1237-resistant mutants obtained, 14 were cross-resistant to guanidine hydrochloride (mrgr), while 1 was susceptible (mrgs). Sequence analysis of the 2C region revealed that the 14 mrgr mutants contained a single nucleotide substitution that altered an amino acid residue from Phe-164 to Tyr. The mrgs mutant, on the other hand, contained a substitution of Ile-120 to Val. Through the construction of a cDNA-derived mutant, we confirmed that the single mutation at Phe-164 was really responsible for the reduced susceptibility to MRL-1237. MRL-1237 inhibited poliovirus-specific RNA synthesis in HeLa cells infected with a wild strain but not with an F164Y mutant. We furthermore examined the effect of mutations of the 2C region on the drug sensitivity of cDNA-derived guanidine-resistant and -dependent mutants. Two guanidine-resistant mutants were cross-resistant to MRL-1237 but remained susceptible to another benzimidazole, enviroxime. Either MRL-1237 or guanidine stimulated the viral replication of two guanidine-dependent mutants, but enviroxime did not. These results indicate that MRL-1237, like guanidine, targets the 2C protein of poliovirus for its antiviral effect.  相似文献   
542.
Rupture of intracranial aneurysms (IAs) causes subarachnoid hemorrhage, a devastating condition with high morbidity and mortality. Angiographic and autopsy studies show that IA is a common disorder, with a prevalence of 3%-6%. Although IA has a substantial genetic component, little attention has been given to the genetic determinants. We report here a genomewide linkage study of IA in 104 Japanese affected sib pairs in which positive evidence of linkage on chromosomes 5q22-31 (maximum LOD score [MLS] 2.24), 7q11 (MLS 3.22), and 14q22 (MLS 2.31) were found. The best evidence of linkage is detected at D7S2472, in the vicinity of the elastin gene (ELN), a candidate gene for IA. Fourteen distinct single-nucleotide polymorphisms (SNPs) were identified in ELN, and no obvious allelic association between IA and each SNP was observed. The haplotype between the intron-20/intron-23 polymorphism of ELN is strongly associated with IA (P=3.81x10-6), and homozygous patients are at high risk (P=.002), with an odds ratio of 4.39. These findings suggest that a genetic locus for IA lies within or close to the ELN locus on chromosome 7.  相似文献   
543.
We have recently shown that IFN-inducible protein 10 (IP-10), a member of the CXC chemokine family, is induced in hepatocytes surrounded by infiltrative mononuclear cells in human livers with chronic hepatitis. Hence, we examined the kinds of stimuli that can induce IP-10 expression in hepatocytes in vivo. While the liver expressed three chemokine genes (IP-10, JE/MCP-1, KC/GRO) in a tissue-specific fashion following systemic treatment with pro-inflammatory cytokines, IP-10 mRNA expression showed the most marked liver-specificity. Pretreatment with GM-CSF selectively inhibited IL-1beta, but not TNF-alpha-induced IP-10 mRNA expression. In situ hybridization analysis in the liver and Northern hybridization analysis in isolated liver cell fractions from rodents treated with pro-inflammatory cytokines revealed cellular sources of chemokine expression. IP-10 mRNA expression in hepatocytes was induced by i.v. administration of TNF-alpha, and to a much lesser extent in response to IL-1beta and IFN-gamma, whereas Kupffer cells and endothelial cells expressed IP-10 mRNA equivalently in response to these three stimuli. On the other hand, JE/MCP-1 mRNA expression was detected only in non-parenchymal cells in response to TNF-alpha and IL-1beta, but not in response to IFN-gamma. KC/GRO mRNA expression was also induced mainly in sinusoidal cells by treatment with TNF-alpha or IL-1beta, although it was detected to a lesser extent in hepatocytes. Our results demonstrated that chemokine induction is stimulus-, tissue- and cell type-specific and that IP-10 (but not MCP-1) is inducible in hepatocytes by TNF-alpha most potently, even in the presence of GM-CSF, suggesting the specific role of TNF-alpha-induced IP-10 on intralobular mononuclear infiltration in chronic hepatitis.  相似文献   
544.
545.
Escherichia coli Orf135 protein is thought to be an enzyme that efficiently hydrolyzes oxidatively damaged nucleotides such as 2-hydroxy-dATP, 8-hydroxy-dGTP and 5-hydroxy-CTP, in addition to 5-methyl-dCTP, dCTP and CTP, thus preventing mutations in cells caused by unfavorable base pairing. Nucleotide pool sanitization by Orf135 is important since organisms are continually subjected to potential damage by reactive oxygen species produced during respiration. It is known that the frequency of spontaneous and H2O2-induced mutations is two to threefold higher in the orf135 - strain compared with the wild-type. Orf135 is a member of the Nudix family of proteins which hydrolyze nucleoside diphosphate derivatives. Nudix hydrolases are characterized by the presence of a conserved motif, although they recognize various substrates and possess a variety of substrate binding pockets. We are interested in delineating the mechanism by which Orf135 recognizes oxidatively damaged nucleotides. To this end, we are investigating the tertiary structure of Orf135 and its interaction with substrate using NMR. Herein, we report on the 1H, 13C and 15N resonance assignments of Orf135, which should contribute towards a structural understanding of Orf135 and its interaction with substrate.  相似文献   
546.
547.
Phelipanche ramosa is a major parasitic weed of Brassica napus. The first step in a host-parasitic plant interaction is stimulation of parasite seed germination by compounds released from host roots. However, germination stimulants produced by B. napus have not been identified yet. In this study, we characterized the germination stimulants that accumulate in B. napus roots and are released into the rhizosphere. Eight glucosinolate-breakdown products were identified and quantified in B. napus roots by gas chromatography-mass spectrometry. Two (3-phenylpropanenitrile and 2-phenylethyl isothiocyanate [2-PEITC]) were identified in the B. napus rhizosphere. Among glucosinolate-breakdown products, P. ramosa germination was strongly and specifically triggered by isothiocyanates, indicating that 2-PEITC, in particular, plays a key role in the B. napus-P. ramosa interaction. Known strigolactones were not detected by ultraperformance liquid chromatography-tandem mass spectrometry, and seed of Phelipanche and Orobanche spp. that respond to strigolactones but not to isothiocyanates did not germinate in the rhizosphere of B. napus. Furthermore, both wild-type and strigolactone biosynthesis mutants of Arabidopsis thaliana Atccd7 and Atccd8 induced similar levels of P. ramosa seed germination, suggesting that compounds other than strigolactone function as germination stimulants for P. ramosa in other Brassicaceae spp. Our results open perspectives on the high adaptation potential of root-parasitic plants under host-driven selection pressures.  相似文献   
548.
A novel bacteriocin, lacticin Z, produced by Lactococcus lactis QU 14 isolated from a horse's intestinal tract was identified. Lacticin Z was purified through a three step procedure comprised of hydrophobic-interaction, cation-exchange chromatography, and reverse-phase HPLC. ESI-TOF MS determined the molecular mass of lacticin Z to be 5,968.9 Da. The primary structure of lacticin Z was found to consist of 53 amino acid residues without any leader sequence or signal peptide. Lacticin Z showed homology to lacticin Q from L. lactis QU 5, aureocin A53 from Staphylococcus aureus A53, and mutacin BHT-B from Streptococcus rattus strain BHT. It exhibited a nanomolar range of MICs against various Gram-positive bacteria, and the activity was completely stable up to 100 degrees C. Unlike many of other LAB bacteriocins, the stability of lacticin Z was emphasized under alkaline conditions rather than acidic conditions. All the results indicated that lacticin Z belongs to a novel type of bacteriocin.  相似文献   
549.
Soy isoflavone aglycones (IFAs) have a wide range of biological actions. We investigated in this study the effect of IFAs on myeloid cells. The cell surface expression of both CD80 and CD86 was up-regulated by treating myeloid cells with IFAs in vitro and in vivo. The findings suggest that IFAs could modulate the myeloid cell function.  相似文献   
550.
Noise-induced hearing loss is at least in part due to disruption of endocochlear potential, which is maintained by various K+ transport apparatuses including Na+, K+-ATPase and gap junction-mediated intercellular communication in the lateral wall structures. In this study, we examined the changes in the ion-trafficking-related proteins in the spiral ligament fibrocytes (SLFs) following in vivo acoustic overstimulation or in vitro exposure of cultured SLFs to 4-hydroxy-2-nonenal, which is a mediator of oxidative stress. Connexin (Cx)26 and Cx30 were ubiquitously expressed throughout the spiral ligament, whereas Na+, K+-ATPase α1 was predominantly detected in the stria vascularis and spiral prominence (type 2 SLFs). One-hour exposure of mice to 8 kHz octave band noise at a 110 dB sound pressure level produced an immediate and prolonged decrease in the Cx26 expression level and in Na+, K+-ATPase activity, as well as a delayed decrease in Cx30 expression in the SLFs. The noise-induced hearing loss and decrease in the Cx26 protein level and Na+, K+-ATPase activity were abolished by a systemic treatment with a free radical-scavenging agent, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl, or with a nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester hydrochloride. In vitro exposure of SLFs in primary culture to 4-hydroxy-2-nonenal produced a decrease in the protein levels of Cx26 and Na+, K+-ATPase α1, as well as Na+, K+-ATPase activity, and also resulted in dysfunction of the intercellular communication between the SLFs. Taken together, our data suggest that disruption of the ion-trafficking system in the cochlear SLFs is caused by the decrease in Cxs level and Na+, K+-ATPase activity, and at least in part involved in permanent hearing loss induced by intense noise. Oxidative stress-mediated products might contribute to the decrease in Cxs content and Na+, K+-ATPase activity in the cochlear lateral wall structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号