首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1534篇
  免费   125篇
  1659篇
  2021年   17篇
  2018年   10篇
  2017年   12篇
  2016年   23篇
  2015年   40篇
  2014年   44篇
  2013年   73篇
  2012年   78篇
  2011年   73篇
  2010年   39篇
  2009年   48篇
  2008年   87篇
  2007年   69篇
  2006年   60篇
  2005年   66篇
  2004年   79篇
  2003年   62篇
  2002年   70篇
  2001年   54篇
  2000年   47篇
  1999年   39篇
  1998年   19篇
  1997年   15篇
  1996年   13篇
  1995年   14篇
  1994年   9篇
  1993年   16篇
  1992年   44篇
  1991年   44篇
  1990年   32篇
  1989年   30篇
  1988年   28篇
  1987年   23篇
  1986年   11篇
  1985年   25篇
  1984年   33篇
  1983年   17篇
  1982年   15篇
  1981年   15篇
  1980年   15篇
  1979年   13篇
  1978年   16篇
  1977年   9篇
  1976年   16篇
  1975年   13篇
  1974年   9篇
  1971年   7篇
  1970年   8篇
  1969年   7篇
  1968年   7篇
排序方式: 共有1659条查询结果,搜索用时 15 毫秒
941.
Oligodendrocyte precursor cells (OPCs) are a unique type of glial cells that function as oligodendrocyte progenitors while constantly proliferating in the normal condition from rodents to humans. However, the functional roles they play in the adult brain are largely unknown. In this study, we focus on the manner of OPC proliferation in the hippocampus of the young adult mice. Here we report that there are oscillatory dynamics in OPC proliferation that differ from neurogenesis in the subgranular zone (SGZ); the former showed S-phase and M-phase peaks in the resting and active periods, respectively, while the latter only exhibited M-phase peak in the active period. There is coincidence between different modes of proliferation and expression of cyclin proteins that are crucial for cell cycle; cyclin D1 is expressed in OPCs, while cyclin D2 is observed in neural stem cells. Similar to neurogenesis, the proliferation of hippocampal OPCs was enhanced by voluntary exercise that leads to an increase in neuronal activity in the hippocampus. These data suggest an intriguing control of OPC proliferation in the hippocampus.  相似文献   
942.
Neuropeptide Y (NPY) is known to induce robust feeding through the action of NPY receptors in the hypothalamus. Among the subtypes of NPY receptors, Y(1) receptors may play a key role in feeding regulation. In the present study, we demonstrated that a novel Y(1) antagonist, J-104870, shows high selectivity and potency for the Y(1) receptor with an anorexigenic effect on NPY-mediated feeding. J-104870 displaced [(125)I]peptide YY (PYY) binding to cloned human and rat Y(1) receptors with K(i) values of 0.29 and 0.54 nM, respectively, and inhibited the NPY (10 nM)-induced increase in intracellular calcium levels (IC(50) = 3.2 nM) in cells expressing human Y(1) receptors. In contrast, J-104870 showed low affinities for human Y(2) (K(i) > 10 microM), Y(4) (K(i) > 10 microM), and Y(5) receptors (K(i) = 6 microM). In rat hypothalamic membranes, J-104870 also completely displaced the binding of [(125)I]1229U91, which is known to bind to the typical Y(1) receptor, with a high affinity (K(i) = 2.0 nM). Intracerebroventricular (ICV) injection of J-104870 (200 microg) significantly suppressed NPY (5 microg)-induced feeding in satiated Sprague-Dawley rats by 74%. Furthermore, ICV and oral administration of J-104870 (200 microg and 100 mg/kg, respectively) significantly suppressed spontaneous food intake in Zucker fatty rats. These findings suggested that J-104870 is a selective and potent nonpeptide Y(1) antagonist with oral bioavailability and brain penetrability. In addition, the anorexigenic effect of J-104870 clearly revealed the participation of the Y(1) receptor in NPY-mediated feeding regulation. The potent and orally active Y(1) antagonist J-104970 is a useful tool for elucidating the physiological roles of NPY in obesity.  相似文献   
943.
D-Amino acid oxidase (DAO), a potential risk factor for schizophrenia, has been proposed to be involved in the decreased glutamatergic neurotransmission in schizophrenia. Here we show the inhibitory effect of an antipsychotic drug, chlorpromazine, on human DAO, which is consistent with previous reports using porcine DAO, although human DAO was inhibited to a lesser degree (Ki = 0.7 mM) than porcine DAO. Since chlorpromazine is known to induce phototoxic or photoallergic reactions and also to be transformed into various metabolites, we examined the effects of white light-irradiated chlorpromazine on the enzymatic activity. Analytical methods including high-resolution mass spectrometry revealed that irradiation triggered the oligomerization of chlorpromazine molecules. The oligomerized chlorpromazine showed a mixed type inhibition with inhibition constants of low micromolar range, indicative of enhanced inhibition. Taken together, these results suggest that oligomerized chlorpromazine could act as an active substance that might contribute to the therapeutic effects of this drug.  相似文献   
944.
945.
946.
We examined energy transfer dynamics in phycobilisomes (PBSs) of cyanobacteria in relation to the morphology and pigment compositions of PBSs. We used Gloeobacter violaceus PCC 7421 and measured time-resolved fluorescence spectra in three types of samples, i.e., intact cells, PBSs, and rod assemblies separated from cores. Fremyella diplosiphon, a cyanobacterial species well known for its complementary chromatic adaptation, was used for comparison after growing under red or green light. Spectral data were analyzed by the fluorescence decay-associated spectra with components common in lifetimes with a time resolution of 3 ps/channel and a spectral resolution of 2 nm/channel. This ensured a higher resolution of the energy transfer kinetics than those obtained by global analysis with fewer sampling intervals. We resolved four spectral components in phycoerythrin (PE), three in phycocyanin (PC), two in allophycocyanin, and two in photosystem II. The bundle-like PBSs of G. violaceus showed multiple energy transfer pathways; fast ( approximately 10 ps) and slow ( approximately 100 ps and approximately 500 ps) pathways were found in rods consisting of PE and PC. Energy transfer time from PE to PC was two times slower in G. violaceus than in F. diplosiphon grown under green light.  相似文献   
947.
AlkB is an Escherichia coli protein that catalyses the oxidative demethylation of 1-methyladenine and 3-methylcytosine in DNA and RNA. The enzyme activity of AlkB is dependent on a 2-oxoglutarate- and Fe(II)-dependent (2OG-Fe[II]) oxygenase domain. Human AlkB homologues (hABH), hABH1, hABH2 and hABH3, which also possess the 2OG-Fe(II) oxygenase domain, have previously been identified. Recent bioinformatics analysis suggests the existence of an additional five ABH genes in humans. In this study, we identified the hABH4-hABH7 mRNAs and determined their expression in human tissues. Moreover, an hABH2 splice variant lacking the 2OG-Fe(II) oxygenase domain and a new gene, hABH8, were cloned from testis cDNA. hABH8 possesses not only the 2OG-Fe(II) oxygenase domain but both an RNA-binding motif and a methyl-transferase domain. mRNA of the eight hABH molecules was detected in the 16 normal human tissues examined. The sub-cellular localization of EmGFP-hABH8 was restricted to the cytoplasm. EmGFP-hABH1, 3, 4, 6 and 7 were localized in both the cytoplasm and nuclei. Interestingly, the EmGFP-hABH2 splice variant localized in nucleoplasm with a dot-like pattern. In some HeLa cells transfected with EmGFP-hABH5, dot-like fluorescence was also detected in the cytoplasm. These observations provide important information for the future annotation of the hABH family of molecules.  相似文献   
948.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the disease COVID-19 can lead to serious symptoms, such as severe pneumonia, in the elderly and those with underlying medical conditions. While vaccines are now available, they do not work for everyone and therapeutic drugs are still needed, particularly for treating life-threatening conditions. Here, we showed nasal delivery of a new, unmodified camelid single-domain antibody (VHH), termed K-874A, effectively inhibited SARS-CoV-2 titers in infected lungs of Syrian hamsters without causing weight loss and cytokine induction. In vitro studies demonstrated that K-874A neutralized SARS-CoV-2 in both VeroE6/TMPRSS2 and human lung-derived alveolar organoid cells. Unlike other drug candidates, K-874A blocks viral membrane fusion rather than viral attachment. Cryo-electron microscopy revealed K-874A bound between the receptor binding domain and N-terminal domain of the virus S protein. Further, infected cells treated with K-874A produced fewer virus progeny that were less infective. We propose that direct administration of K-874A to the lung could be a new treatment for preventing the reinfection of amplified virus in COVID-19 patients.  相似文献   
949.
Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.  相似文献   
950.
We previously revealed the presence of six genetically distinct matrilineal populations of the Japanese dormouse Glirulus japonicus in the distribution range of Honshu, Shikoku, and Kyushu islands. In this study, we extended this analysis using mitochondrial cytochrome b gene sequences (n = 96) and Y-chromosome-specific SRY gene sequences (n = 22) from individuals collected from Honshu, Shikoku, Kyushu, and Oki Dogo I. The cytochrome b sequence data allowed us to define precise geographic ranges of the six previously known and three newly found distinct matrilineal lineages: northeastern Honshu (I), east-central Honshu (II), west-central Honshu and the Kii Peninsula (III), the western part of Honshu (IV), Shikoku (V), westernmost Honshu and Kyushu (VI), the northern part of central Honshu (VII), the southern part of central Honshu (VIII), and Oki Dogo I. (IX). Our inference of geographic borders suggests that regions of lower and higher altitudes in the mountain systems played important roles in driving the hosting and separation of lineages, respectively. Six matrilineal lineages (I, II, V, VI, VIII, and XI) were shown to possess their own SRY haplotypes, while lineages III and IV shared one haplotype. These data together with our previous observation of nuclear ribosomal RNA gene variation indicate advanced populational subdivision in this species. It is thus evident that each of the populations, including those living at high latitudes and in limited geographic spaces, have survived for several million years. A specific ability to tolerate cold may have permitted G. japonicus to preserve anciently diverged lineages in each locality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号