首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   5篇
  2022年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
排序方式: 共有60条查询结果,搜索用时 578 毫秒
11.
12.
Nucleotide sequence of ovine interleukin-1 beta.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   
13.
The myrosinase‐glucosinolate system is considered to be a major component of the preformed defence system of Brassicaceae species. This hypothesis has influenced the belief that the components of the myrosinase‐glucosinolate system are present at fixed levels which are independent of environmental factors. In the present study we show that external availability of nutrients can modulate the expression levels of myrosinase enzymes (EC 3.2.3.1). Nutrients such as sulphate, iron, copper, zinc and manganese were tested for their modulation effect on myrosinase expression levels and activity in roots, stems, cotyledons and buds of Sinapis alba seedlings at four different developmental stages. The most sensitive organ was the bud where iron deficiency approximately doubled the myrosinase activity. Removal of sulphate and all four micronutrients reduced the myrosinase activity to approximately half of the activity in plants supplemented with all these nutrients. The myrosinase polypeptides can be divided into classes based on molecular mass after reduction. The nutritional status influenced mainly the 68‐kDa class of myrosinases as revealed by western blot and laser scan densitometry of the immunolabelled blots.  相似文献   
14.
Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt+/+ mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt−/− mice did not. Compared with Pemt+/+ mice, Pemt−/− mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt−/− mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt−/− mice. Furthermore, Pemt+/+ mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.  相似文献   
15.
The incidence of colorectal cancer (CRC) increases with age and early onset indicates an increased likelihood for genetic predisposition for this disease. The somatic genetics of tumor development in relation to patient age remains mostly unknown. We have examined the mutation status of five known cancer critical genes in relation to age at diagnosis, and compared the genomic complexity of tumors from young patients without known CRC syndromes with those from elderly patients. Among 181 CRC patients, stratified by microsatellite instability status, DNA sequence changes were identified in KRAS (32%), BRAF (16%), PIK3CA (4%), PTEN (14%) and TP53 (51%). In patients younger than 50 years (n = 45), PIK3CA mutations were not observed and TP53 mutations were more frequent than in the older age groups. The total gene mutation index was lowest in tumors from the youngest patients. In contrast, the genome complexity, assessed as copy number aberrations, was highest in tumors from the youngest patients. A comparable number of tumors from young (<50 years) and old patients (>70 years) was quadruple negative for the four predictive gene markers (KRAS-BRAF-PIK3CA-PTEN); however, 16% of young versus only 1% of the old patients had tumor mutations in PTEN/PIK3CA exclusively. This implies that mutation testing for prediction of EGFR treatment response may be restricted to KRAS and BRAF in elderly (>70 years) patients. Distinct genetic differences found in tumors from young and elderly patients, whom are comparable for known clinical and pathological variables, indicate that young patients have a different genetic risk profile for CRC development than older patients.  相似文献   
16.
The luzopeptins are DNA bisintercalating antibiotics that contain a decadepsipeptide to which are attached two quinoline chromophores. We have used atomic force microscopy (AFM) to investigate the interaction between luzopeptin B and DNA in an attempt to shed light on the binding mode of this antibiotic. AFM images provided contour lengths which were used as a direct measure of bisintercalation. Binding of luzopeptin B was investigated using two different DNA sequences, one having a GC content of 42% and the other 59%, which revealed a higher degree of bisintercalation into the DNA sequences having the lower GC content. The measured increment in contour length was found to plateau at values corresponding to binding of one drug molecule every 40 and 72 bp to the 42 and 59% GC sequences, respectively. In addition to the length increase, a higher proportion of DNA molecules displaying complex morphology was observed as the concentration of luzopeptin was increased. Such molecules were not included in the measurements of contour length. We propose that the various manifestations of complex morphology arise from both inter- and intramolecular cross-linking of the DNA caused by binding of luzopeptin, providing direct evidence of cross-linked species by AFM imaging.  相似文献   
17.
The mechanisms by which in vivo electroporation (EP) improves the potency of i.m. DNA vaccination were characterized by using the hepatitis C virus nonstructural (NS) 3/4A gene. Following a standard i.m. injection of DNA with or without in vivo EP, plasmid levels peaked immediately at the site of injection and decreased by 4 logs the first week. In vivo EP did not promote plasmid persistence and, depending on the dose, the plasmid was cleared or almost cleared after 60 days. In vivo imaging and immunohistochemistry revealed that protein expression was restricted to the injection site despite the detection of significant levels of plasmid in adjacent muscle groups. In vivo EP increased and prolonged NS3/4A protein expression levels as well as an increased infiltration of CD3+ T cells at the injection site. These factors most likely additively contributed to the enhanced and broadened priming of NS3/4A-specific Abs, CD4+ T cells, CD8+ T cells, and gamma-IFN production. The primed CD8+ responses were functional in vivo, resulting in elimination of hepatitis C virus NS3/4A-expressing liver cells in transiently transgenic mice. Collectively, the enhanced protein expression and inflammation at the injection site following in vivo EP contributed to the priming of in vivo functional immune responses. These localized effects most likely help to insure that the strength and duration of the responses are maintained when the vaccine is tested in larger animals, including rabbits and humans. Thus, the combined effects mediated by in vivo EP serves as a potent adjuvant for the NS3/4A-based DNA vaccine.  相似文献   
18.
19.
In resting T-cells, the transmembrane adaptor protein PAG (phosphoprotein associated with glycosphingolipid-enriched microdomains) is constitutively tyrosine-phosphorylated, a state maintained by the Src family kinase FynT. PAG has a role in negative regulation of Src family kinases in T-cells by recruitment of Csk (C-terminal Src kinase) to the membrane via binding to PAG phosphotyrosine 317. The interaction between FynT and PAG is essential for PAG function; however, so far the FynT binding mode has been unknown. Here, we demonstrate that the FynT-PAG complex formation is a dual domain docking process, involving SH2 domain binding to PAG phosphotyrosines as well as an SH3 domain interaction with the first proline-rich region of PAG. This binding mode affects FynT kinase activity, PAG phosphorylation, and recruitment of FynT and Csk, demonstrated in Jurkat TAg cells after antibody stimulation of the T cell receptor. Furthermore, we show that TCR-induced tyrosine phosphorylation is regulated by SH3 domain modulation of the FynT-PAG interaction in human primary T-cells. Although FynT SH3 domain association is shown to be crucial for efficiently initiating PAG phosphorylation, we suggest that engagement of the SH2 domain on PAG renders FynT insensitive to Csk negative regulation. Thus, in T-cells, PAG is involved in positive as well as negative regulation of FynT activity.  相似文献   
20.
Faithful chromosome segregation during mitosis relies on a proofreading mechanism that monitors proper kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) is based on the concerted action of numerous components that maintain a repressive signal inhibiting transition into anaphase until all chromosomes are attached. Here we show that A-Kinase Anchoring Protein 95 (AKAP95) is necessary for proper SAC function. AKAP95-depleted HeLa cells show micronuclei formed from lagging chromosomes at mitosis. Using a BioID proximity-based proteomic screen, we identify the nuclear pore complex protein TPR as a novel AKAP95 binding partner. We show interaction between AKAP95 and TPR in mitosis, and an AKAP95-dependent enrichment of TPR in the spindle microtubule area in metaphase, then later in the spindle midzone area. AKAP95-depleted cells display faster prometaphase to anaphase transition, escape from nocodazole-induced mitotic arrest and show a partial delocalization from kinetochores of the SAC component MAD1. Our results demonstrate an involvement of AKAP95 in proper SAC function likely through its interaction with TPR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号