首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2948篇
  免费   167篇
  国内免费   1篇
  2022年   13篇
  2021年   39篇
  2020年   16篇
  2019年   17篇
  2018年   31篇
  2017年   29篇
  2016年   53篇
  2015年   117篇
  2014年   135篇
  2013年   208篇
  2012年   171篇
  2011年   189篇
  2010年   122篇
  2009年   137篇
  2008年   181篇
  2007年   171篇
  2006年   196篇
  2005年   197篇
  2004年   222篇
  2003年   186篇
  2002年   162篇
  2001年   36篇
  2000年   35篇
  1999年   57篇
  1998年   39篇
  1997年   33篇
  1996年   23篇
  1995年   24篇
  1994年   21篇
  1993年   20篇
  1992年   22篇
  1991年   17篇
  1990年   16篇
  1989年   11篇
  1988年   21篇
  1987年   11篇
  1986年   9篇
  1985年   13篇
  1984年   12篇
  1983年   9篇
  1982年   13篇
  1981年   16篇
  1979年   8篇
  1978年   9篇
  1977年   5篇
  1976年   12篇
  1975年   6篇
  1971年   6篇
  1969年   3篇
  1968年   4篇
排序方式: 共有3116条查询结果,搜索用时 0 毫秒
131.
Suzuki H  Nakayama T  Nishino T 《Biochemistry》2003,42(6):1764-1771
The versatile plant acyltransferase (VPAT) family is a recently identified protein family consisting of acyltransferases involved in secondary metabolism in plants along with numerous homologues with as yet unidentified biochemical functions. Malonyl-CoA:anthocyanin 5-O-glucoside-6' "-O-malonyltransferase of Salvia splendens flowers (Ss5MaT1) is a member of this family that catalyzes the regiospecific transfer of the malonyl group from malonyl-CoA to the 6' "-hydroxyl group of the 5-glycosyl moiety of anthocyanins. To elucidate the mechanism and functional amino acid residues of VPAT family enzymes, steady-state kinetic analyses and site-directed mutagenesis of Ss5MaT1 guided by sequence comparison studies were carried out. On the basis of the results of product and dead-end inhibition studies as well as sequence comparison studies, the kinetic mechanism of Ss5MaT1 could be most consistently described in terms of a ternary complex mechanism in which both substrates and the enzyme form a complex before catalysis can occur, as in the case of chloramphenicol O-acetyltransferase (CAT) and histone acetyltransferase (HAT). Eight polar or ionizable amino acid residues that are invariant among 12 VPAT family enzymes were replaced by alanine, and the mutant enzymes were kinetically characterized. A significant diminution of the k(cat) value was observed with the substitution of His167 (relative k(cat), 0.02%) and Asp390 (<0.01%), strongly suggesting that His167 and Asp390 are very important for catalytic activity. The log k(cat) versus pH plots of the Ss5MaT1-catalyzed malonyl transfer suggested that a deprotonated active site group of pK(a) = 7.0 +/- 0.1 may be involved in the catalytic steps of the "substrate to product" conversion in the ternary enzyme-substrate complex. Taking these lines of evidence together with the suggested similarity of the kinetic and catalytic mechanisms of Ss5MaT1 to those of CAT and HAT, the following Ss5MaT1 mechanism based on general acid/base catalysis was proposed: in the ternary complex, a general base deprotonates the 6' "-hydroxyl group of the anthocyanin substrate, thereby promoting a nucleophilic attack on the carbonyl of the thioester of malonyl-CoA; His167 and Asp390 appear to be involved in the general acid/base mechanism of Ss5MaT1.  相似文献   
132.
Mouse embryonic stem-derived cells were recently shown to differentiate into endothelial and smooth muscle cells. In the present study, we investigated whether human umbilical vein endothelium-derived cells retain the potential to differentiate into smooth muscle cells. Examination of biochemical markers, including basic calponin, SM22alpha, prostaglandin E synthase, von Willebrand factor, and PECAM-1, as well as cell contractility, showed that whereas endothelium-derived cells cultured with fibroblast growth factor can be characterized as endothelial cells, when deprived of fibroblast growth factor, a significant fraction differentiates into smooth muscle-like cells. Reapplication of fibroblast growth factor reversed this differentiation. Activin A was up-regulated in fibroblast growth factor-deprived, endothelium-derived cells; moreover, the inhibitory effects of exogenous follistatin and overexpressed Smad7 on smooth muscle-like differentiation confirmed that the differentiation was driven by activin A signaling. These findings indicate that when deprived of fibroblast growth factor, human umbilical vein endothelium-derived cells are capable of differentiating into smooth muscle-like cells through activin A-induced, Smad-dependent signaling, and that maintenance of the endothelial cell phenotype and differentiation into smooth muscle-like cells are reciprocally controlled by fibroblast growth factor-1 and activin A.  相似文献   
133.
The putative Rhodococcus rrn promoter region was cloned from the benzothiophene desulfurizing Rhodococcus sp. strain T09, and the dibenzothiophene desulfurizing gene, dsz, was expressed under the control of the putative rrn promoter in the strain T09 using a Rhodococcus–E.coli shuttle vector. Strain T09 harboring the expression vector, pNT, could desulfurize dibenzothiophene in the presence of inorganic sulfate, methionine, or cysteine, while the Dsz phenotype was completely repressed in recombinant cells carrying the gene under the control of the native dsz promoter under the same conditions. Among the sulfur sources examined, no intermediates were detected and only the final desulfurized product, 2-hydroxy-biphenyl, was produced using ammonium sulfate as the sulfur source. Received: 4 December 2001 / Accepted: 7 January 2002  相似文献   
134.
A transfer function from baroreceptor pressure input to sympathetic nerve activity (SNA) shows derivative characteristics in the frequency range below 0.8 Hz in rabbits. These derivative characteristics contribute to a quick and stable arterial pressure (AP) regulation. However, if the derivative characteristics hold up to heart rate frequency, the pulsatile pressure input will yield a markedly augmented SNA signal. Such a signal would saturate the baroreflex signal transduction, thereby disabling the baroreflex regulation of AP. We hypothesized that the transfer gain at heart rate frequency would be much smaller than that predicted from extrapolating the derivative characteristics. In anesthetized rabbits (n = 6), we estimated the neural arc transfer function in the frequency range up to 10 Hz. The transfer gain was lost at a rate of -20 dB/decade when the input frequency exceeded 0.8 Hz. A numerical simulation indicated that the high-cut characteristics above 0.8 Hz were effective to attenuate the pulsatile signal and preserve the open-loop gain when the baroreflex dynamic range was finite.  相似文献   
135.
Transgenic mice are widely used to study cardiac function, but strain-dependent differences in autonomic nervous system activity (ANSA) have not been explored. We compared 1) short-term pharmacological responses of cardiac rhythm in FVB vs. C57Black6/SV129 wild-type mice and 2) long-term physiological dynamics of cardiac rhythm and survival in tumor necrosis factor (TNF)-alpha transgenic mice with heart failure (TNF-alpha mice) on defined backgrounds. Ambulatory telemetry electrocardiographic recordings and response to saline, adrenergic, and cholinergic agents were examined in FVB and C57Black6/SV129 mice. In FVB mice, baseline heart rate (HR) was higher and did not change after injection of isoproterenol or atropine but decreased with propranolol. In C57Black6/SV129 mice, HR did not change with propranolol but increased with isoproterenol or atropine. Mean HR, but not indexes of HR variability, was an excellent predictor of response to autonomic agents. The proportion of surviving animals was higher in TNF-alpha mice on an FVB background than on a mixed FVB/C57Black6 background. The homeostatic states of ANSA are strain specific, which can explain the interstrain differences in mean HR, pharmacological responses, and survival of animals with congestive heart failure. Strain-specific differences should be considered in selecting the strains of mice used for transgenic and gene targeting experiments.  相似文献   
136.
WEHI164S cells were found to be very sensitive targets for in vitro killing in a 6-h culture when liver or splenic lymphocytes were used as effector cells in mice. Of particular interest, a limiting cell-dilution analysis showed that effector cells were present in the liver with a high frequency (1/4,300). In contrast to YAC-1 cells as NK targets, perforin-based cytotoxicity was not highly associated with WEHI164S killing. The major killer mechanism for WEHI164S targets was TNFalpha-mediated cytotoxicity. By cell sorting experiments, both NK cells and intermediate T cells (i.e., TCR(int) cells) were found to contain effector cells against WEHI164S cells. However, the killer mechanisms underlying these effector cells were different. Namely, NK cells killed WEHI164S cells by perforin-based cytotoxicity, TNFalpha-mediated cytotoxicity, Fas ligand cytotoxicity, and other mechanisms, whereas intermediate T cells did so mainly by TNFalpha-mediated cytotoxicity. These results suggest that TNFalpha-mediated cytotoxicity mediated by so-called natural cytotoxic (NC) cells comprised events which were performed by both NK and intermediate T cells using somewhat different killer mechanisms. Intermediate T cells which were present in the liver were able to produce TNFalpha if there was appropriate stimulation.  相似文献   
137.
The heme environments of Met(95) and His(77) mutants of the isolated heme-bound PAS domain (Escherichia coli DOS PAS) of a direct oxygen sensing protein from E. coli (E. coli DOS) were investigated with resonance Raman (RR) spectroscopy and compared with the wild type (WT) enzyme. The RR spectra of both the reduced and oxidized WT enzyme were characteristic of six-coordinate low spin heme complexes from pH 4 to 10. The time-resolved RR spectra of the photodissociated CO-WT complex had an iron-His stretching band (nu(Fe-His)) at 214 cm(-1), and the nu(Fe-CO) versus nu(CO) plot of CO-WT E. coli DOS PAS fell on the line of His-coordinated heme proteins. The photodissociated CO-H77A mutant complex did not yield the nu(Fe-His) band but gave a nu(Fe-Im) band in the presence of imidazole. The RR spectrum of the oxidized M95A mutant was that of a six-coordinate low spin complex (i.e. the same as that of the WT enzyme), whereas the reduced mutant appeared to contain a five-coordinate heme complex. Taken together, we suggest that the heme of the reduced WT enzyme is coordinated by His(77) and Met(95), and that Met(95) is displaced by CO and O(2). Presumably, the protein conformational change that occurs upon exchange of an unknown ligand for Met(95) following heme reduction may lead to activation of the phosphodiesterase domain of E. coli DOS.  相似文献   
138.
Although ATP is the most common phosphoryl group donor for kinases, some kinases from certain hyperthermophilic archaea such as Pyrococcus horikoshii and Thermococcus litoralis use ADP as the phosphoryl donor. Those are ADP-dependent glucokinases (ADPGK) and phosphofructokinases in their glycolytic pathway. Here, we succeeded in gene cloning the ADPGK from P. horikoshii OT3 (phGK) in Escherichia coli,and in easy preparation of the enzyme, crystallization, and the structure determination of the apo enzyme. Recently, the three-dimensional structure of the ADPGK from T. litoralis (tlGK) in a complex with ADP was reported. The overall structure of two homologous enzymes (56.7%) was basically similar: This means that they consisted of large alpha/beta-domains and small domains. However, a marked adjustment of the two domains, which is a 10-A translation and a 20 degrees rotation from the conserved GG sequence located at the center of the hinge, was observed between the apo-phGK and ADP-tlGK structures. The ADP-binding loop (430-439) was disordered in the apo form. It is suggested that a large conformational change takes place during the enzymatic reaction.  相似文献   
139.
High performance liquid chromatography (HPLC) was used to assess the uptake dynamics of the cryoprotectant DMSO by intact unfertilized eggs (stage 0), 8-cell (stage 5) and eyed embryos (stage 30) of medaka, Oryzias latipes, the relation of the internal concentration (Cin) of DMSO with fertilization and survival rates, and the effects of several factors on these processes. The factors examined were: cryoprotectant concentration (0.6, 1.2, 1.9 and 2.5 M), impregnation time (1, 3, 5, 10, 15 and 20 min), temperature (0, 5 and 20 degrees C), hydrostatic pressure (0 and 50 atm), and the osmotic conditions of the materials (normal or partially dehydrated). Cryoprotectant permeation, estimated from the initial rates of DMSO uptake, was higher in embryos than in eggs and increased with embryonic development; however, the DMSO Cin in eyed embryos reached a plateau at 1-5 min and could not be increased by prolonging impregnation. The highest fertilization and survival rates for any given DMSO Cin were obtained with high concentrations and short times of impregnation rather than low concentrations and long impregnation times. Application of hydrostatic pressure (50 atm) and exposure for 3 min to a 1 M trehalose solution prior to impregnation induced a substantial increase in the DMSO Cin of 8-cell embryos in comparison to untreated controls with no significant effect on survival. Hydrostatic pressure also promoted DMSO uptake in unfertilized eggs, but with rapid loss of viability, and was ineffective in eyed embryos. The uptake of DMSO and its toxicity to 8-cell embryos were directly proportional to the temperature of impregnation. The results of this study reveal important interactions between cryoprotectant concentration, impregnation time and the developmental stage (or type) of the materials and provide evidence that hydrostatic pressure, temperature of impregnation and the osmotic conditions of the materials can be manipulated to increase the uptake of cryoprotectant by fish eggs and embryos.  相似文献   
140.
Transposon insertional mutants of Listeria monocytogenes were constructed to identify genes involved in osmotolerance, and one mutant that showed reduced growth under high osmotic pressure was obtained. The cloned gene from the transposon insertion site of the mutant, named rel, was 2,214 bp in length and had very high homology to relA of Bacillus subtilis, which encodes guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) [collectively designated (p)ppGpp] synthetase during stringent response. The mutant showed a deficiency in (p)ppGpp accumulation. In the parental strain, the amount of intracellular (p)ppGpp was not increased after an osmotic upshift but was slightly decreased compared with the level before the upward shift. The reduced osmotolerance of the mutant was restored to a level almost equal to that of the parent strain when the chromosomal region that included rel of L. monocytogenes was introduced into the mutant. After exposure to methyl glucoside, the rel mutant accumulated (p)ppGpp at a higher level than the basal level and partially restored the ability to grow in NaCl-supplemented brain heart infusion broth. The mutant was found to grow in chemically defined minimal medium supplemented with glycine betaine or carnitine, so-called compatible solutes, and 4% NaCl. Our results suggest that the appropriate intracellular concentration of (p)ppGpp is essential for full osmotolerance in L. monocytogenes and that its mechanism is different from that for the accumulation of compatible solutes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号