首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2932篇
  免费   231篇
  3163篇
  2022年   18篇
  2021年   45篇
  2020年   27篇
  2019年   33篇
  2018年   48篇
  2017年   30篇
  2016年   70篇
  2015年   97篇
  2014年   124篇
  2013年   147篇
  2012年   203篇
  2011年   210篇
  2010年   124篇
  2009年   129篇
  2008年   157篇
  2007年   154篇
  2006年   138篇
  2005年   149篇
  2004年   104篇
  2003年   114篇
  2002年   117篇
  2001年   41篇
  2000年   56篇
  1999年   41篇
  1998年   31篇
  1997年   25篇
  1996年   27篇
  1994年   19篇
  1993年   17篇
  1992年   38篇
  1991年   41篇
  1990年   34篇
  1989年   24篇
  1988年   31篇
  1987年   27篇
  1986年   20篇
  1985年   21篇
  1984年   27篇
  1982年   19篇
  1981年   19篇
  1980年   22篇
  1979年   22篇
  1978年   18篇
  1977年   26篇
  1975年   16篇
  1974年   21篇
  1973年   19篇
  1972年   20篇
  1971年   19篇
  1969年   15篇
排序方式: 共有3163条查询结果,搜索用时 0 毫秒
81.
Lateral plate and uropod glands are composed of a binucleated gland cell, a ramified intermediate cell, and an elongated duct cell. The gland cell is divided into several lobes and forms numerous short processes in its periphery. The cytoplasm contains many secretory granules. The granules release their content into the intercellular collecting ducts between the gland cell and the branched extensions of the intermediate cell. The collecting ducts merge into a funnel-shaped space surrounded by the intermediate cell. The duct cell is lined by a cuticular intima and contains long striated bundles of fibrils. The duct cell consists of two different regions. The proximal region is characterized by microvilli on the luminal side and contains many organelles. In the distal region microvilli are lacking and organelles are scarce. Structurally, the uropod and lateral plate glands differ in the number of components within the granules. This is in accordance with the differences in the characteristics of the secretory products of the two gland types. The morphology of the glands, particularly the peripheral position of the collecting system, is unique among exocrine glands of arthropods. J. Morphol. 233:183–193, 1997 © 1997 Wiley-Liss, Inc.  相似文献   
82.
83.
84.

Background

The cytoskeletal adaptor protein vinculin plays a fundamental role in cell contact regulation and affects central aspects of cell motility, which are essential to both embryonal development and tissue homeostasis. Functional regulation of this evolutionarily conserved and ubiquitously expressed protein is dominated by a high-affinity, autoinhibitory head-to-tail interaction that spatially restricts ligand interactions to cell adhesion sites and, furthermore, limits the residency time of vinculin at these sites. To date, no mutants of the vinculin protein have been characterized in animal models.

Methodology/Principal Findings

Here, we investigate vinculin-ΔEx20, a splice variant of the protein lacking the 68 amino acids encoded by exon 20 of the vinculin gene VCL. Vinculin-ΔEx20 was found to be expressed alongside with wild type protein in a knock-in mouse model with a deletion of introns 20 and 21 (VCL-ΔIn20/21 allele) and shows defective head-to-tail interaction. Homozygous VCL-ΔIn20/21 embryos die around embryonal day E12.5 showing cranial neural tube defects and exencephaly. In mouse embryonic fibroblasts and upon ectopic expression, vinculin-ΔEx20 reveals characteristics of constitutive head binding activity. Interestingly, the impact of vinculin-ΔEx20 on cell contact induction and stabilization, a hallmark of the vinculin head domain, is only moderate, thus allowing invasion and motility of cells in three-dimensional collagen matrices. Lacking both F-actin interaction sites of the tail, the vinculin-ΔEx20 variant unveils vinculin''s dynamic binding to cell adhesions independent of a cytoskeletal association, and thus differs from head-to-tail binding deficient mutants such as vinculin-T12, in which activated F-actin binding locks the protein variant to cell contact sites.

Conclusions/Significance

Vinculin-ΔEx20 is an active variant supporting adhesion site stabilization without an enhanced mechanical coupling. Its presence in a transgenic animal reveals the potential of splice variants in the vinculin gene to alter vinculin function in vivo. Correct control of vinculin is necessary for embryonic development.  相似文献   
85.
86.
The human major histocompatibility complex class I antigen HLA‐B*2705 binds several sequence‐related peptides (pVIPR, RRKWRRWHL; pLPM2, RRRWRRLTV; pGR, RRRWHRWRL). Cross‐reactivity of cytotoxic T cells (CTL) against these HLA‐B*2705:peptide complexes seemed to depend on a particular peptide conformation that is facilitated by the engagement of a crucial residue within the binding groove (Asp116), associated with a noncanonical bulging‐in of the middle portion of the bound peptide. We were interested whether a conformational reorientation of the ligand might contribute to the lack of cross‐reactivity of these CTL with a peptide derived from voltage‐dependent calcium channel α1 subunit (pCAC, SRRWRRWNR), in which the C‐terminal peptide residue pArg9 could engage Asp116. Analyses of the HLA‐B*2705:pCAC complex by X‐ray crystallography at 1.94 Å resolution demonstrated that the peptide had indeed undergone a drastic reorientation, leading it to adopt a canonical binding mode accompanied by the loss of molecular mimicry between pCAC and sequence‐related peptides such as pVIPR, pLMP2, and pGR. This was clearly a consequence of interactions of pArg9 with Asp116 and other F‐pocket residues. Furthermore, we observed an unprecedented reorientation of several additional residues of the HLA‐B*2705 heavy chain near the N‐terminal region of the peptide, including also the presence of double conformations of two glutamate residues, Glu63 and Glu163, on opposing sides of the peptide binding groove. Together with the Arg‐Ser exchange at peptide position 1, there are thus multiple structural reasons that may explain the observed failure of pVIPR‐directed, HLA‐B*2705‐restricted CTL to cross‐react with HLA‐B*2705:pCAC complexes.  相似文献   
87.
Nonmuscle myosin II (Myo2) has been shown to associate with membranes of the trans-Golgi network and to be involved in Golgi to ER retrograde protein transport. Here, we provide evidence that Myo2 not only associates with membranes but functions to transport vesicles on actin filaments (AFs). We used extracts from unactivated clam oocytes for these studies. AFs assembled spontaneously in these extracts and myosin-dependent vesicle transport was observed upon activation. In addition, actin bundles formed and moved relative to each other at an average speed of 0.30 microm/s. Motion analysis revealed that vesicles moved on the spontaneously assembled AFs at speeds greater than 1 microm/s. The motor on these vesicles was identified as a member of the nonmuscle Myo2 family based on sequence determination by Edman chemistry. Vesicles in these extracts were purified by sucrose gradient centrifugation and movement was reconstituted in vitro using skeletal muscle actin coated coverslips. When peripheral membrane proteins of vesicles including Myo2 were removed by salt stripping or when extracts were treated with an antibody specific to clam oocyte nonmuscle Myo2, vesicle movement was inhibited. Blebbistatin, a Myo2 specific inhibitor, also blocked vesicle movement. Myo2 light chain kinase activity was found to be essential for vesicle movement and sliding of actin bundles. Together, our data provide direct evidence that nonmuscle Myo2 is involved in actin-dependent vesicle transport in clam oocytes.  相似文献   
88.
Fifteen new DOPA-derived pyrrole alkaloids, named baculiferins A–O (216), were isolated from the Chinese marine sponge Iotrochota baculifera, together with the known alkaloids purpurone (1) and ningalin A (17). Most of the new compounds contain one to three O-sulfate units. Their structures were determined by extensive spectroscopic analysis including 1H and 13C NMR (COSY, HMQC, HMBC) and ESIMS data. A possible pathway for the biosynthetic origin of the isolated alkaloids is proposed, in which DOPA is assumed to be a joint biogenetic precursor. Baculiferins C, E–H, and K–N (4, 69, 1215) were found to be potent inhibitors against the HIV-1 IIIB virus in both, MT4 and MAGI cells. Additional bioassay revealed that baculiferins could dramatically bind to the HIV-1 target proteins Vif, APOBEC3G, and gp41, for which structure–activity relationships are discussed.  相似文献   
89.
Systemic lupus erythematosus (SLE) is a chronic heterogeneous autoimmune disorder characterized by the loss of tolerance to self-antigens and dysregulated interferon responses. The etiology of SLE is complex, involving both heritable and environmental factors. Candidate-gene studies and genome-wide association (GWA) scans have been successful in identifying new loci that contribute to disease susceptibility; however, much of the heritable risk has yet to be identified. In this study, we sought to replicate 1,580 variants showing suggestive association with SLE in a previously published GWA scan of European Americans; we tested a multiethnic population consisting of 7,998 SLE cases and 7,492 controls of European, African American, Asian, Hispanic, Gullah, and Amerindian ancestry to find association with the disease. Several genes relevant to immunological pathways showed association with SLE. Three loci exceeded the genome-wide significance threshold: interferon regulatory factor 8 (IRF8; rs11644034; pmeta-Euro = 2.08 × 10−10), transmembrane protein 39A (TMEM39A; rs1132200; pmeta-all = 8.62 × 10−9), and 17q21 (rs1453560; pmeta-all = 3.48 × 10−10) between IKAROS family of zinc finger 3 (AIOLOS; IKZF3) and zona pellucida binding protein 2 (ZPBP2). Fine mapping, resequencing, imputation, and haplotype analysis of IRF8 indicated that three independent effects tagged by rs8046526, rs450443, and rs4843869, respectively, were required for risk in individuals of European ancestry. Eleven additional replicated effects (5 × 10−8 < pmeta-Euro < 9.99 × 10−5) were observed with CFHR1, CADM2, LOC730109/IL12A, LPP, LOC63920, SLU7, ADAMTSL1, C10orf64, OR8D4, FAM19A2, and STXBP6. The results of this study increase the number of confirmed SLE risk loci and identify others warranting further investigation.  相似文献   
90.
Site-directed mutagenesis was carried out to investigate the roles of a number of highly conserved residues of the chitin-binding domain (ChBD) of Bacillus circulans chitinase A1 (ChiA1) in the binding of chitin. Analysis of single alanine replacement mutants showed that mutation of an exposed tryptophan residue (Trp(687)) impaired the binding to chitin, while mutation of other highly conserved residues, most carrying aromatic or hydrophobic side chains, did not significantly affect the binding activity. Interestingly, replacement of Trp(687) with phenylalanine significantly reduced chitin-binding activity at lower salt concentrations (0-1 M NaCl) but allowed strong binding to chitin at 2 M NaCl. Since Trp(687) is conserved among the ChBDs belonging to the bacterial ChiA1 subfamily, the data presented suggest a general mechanism in which this exposed tryptophan, which is located in the cleft formed between two beta-sheets as revealed by the solution structure [J. Biol. Chem. 275 (2000) 13654], makes a major contribution to ligand binding presumably through hydrophobic interactions. Furthermore, modulation of the chitin-binding activity by the conserved amino acid replacement (W687F) and a shift in the ionic strength of buffer has led to the development of an elutable affinity tag for single column purification of recombinant proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号