首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2928篇
  免费   231篇
  2022年   16篇
  2021年   45篇
  2020年   27篇
  2019年   33篇
  2018年   48篇
  2017年   30篇
  2016年   70篇
  2015年   97篇
  2014年   124篇
  2013年   147篇
  2012年   203篇
  2011年   210篇
  2010年   124篇
  2009年   129篇
  2008年   157篇
  2007年   154篇
  2006年   138篇
  2005年   149篇
  2004年   104篇
  2003年   114篇
  2002年   117篇
  2001年   41篇
  2000年   56篇
  1999年   41篇
  1998年   31篇
  1997年   25篇
  1996年   27篇
  1994年   19篇
  1993年   17篇
  1992年   38篇
  1991年   41篇
  1990年   34篇
  1989年   24篇
  1988年   31篇
  1987年   27篇
  1986年   20篇
  1985年   21篇
  1984年   27篇
  1982年   19篇
  1981年   19篇
  1980年   22篇
  1979年   22篇
  1978年   18篇
  1977年   26篇
  1975年   16篇
  1974年   21篇
  1973年   19篇
  1972年   20篇
  1971年   19篇
  1969年   15篇
排序方式: 共有3159条查询结果,搜索用时 281 毫秒
61.
Summary Combining dielectrophoretic and hydrodynamic forces in micro electrode structures allows enrichment and stable trapping of viruses in aqueous solutions. Fluorescently labelled Influenza and Sendai viruses were collected from solutions of 2*105 – 2*108 viruses/l within a few seconds. In the central part of the trap a virus aggregate of about 2–9 m in diameter was formed. This corresponds to a local enrichment of viruses up to a factor of about 1400.  相似文献   
62.
Plant nutrition and growth: Basic principles   总被引:2,自引:0,他引:2  
Soil compaction may restrict shoot growth of sugar beet plants. Roots, however, are the plant organs directly exposed to soil compaction and should therefore be primarily affected. The aim of this study was to determine the influence of mechanical resistance and aeration of compacted soil on root and shoot growth and on phosphorus supply of sugar beet. For this purpose, a silt loam soil was adjusted to bulk densities of 1.30, 1.50 and 1.65 g cm–3 and water tensions of 300 and 60 hPa. Sugar beet was grown in a growth chamber under constant climatic conditions for 4 weeks. Both, decrease of water tension and increase of bulk density impeded root and shoot growth. In contrast, the P supply of the plants was differently affected. At the same air-filled pore volume, the P concentration of the shoots was reduced by a decrease of soil water tension, but not by an increase of bulk density. Both factors also reduced root length and root hair formation, however, in compacted soil the plants partly substituted for the reduction of root size by increasing the P uptake efficiency per unit of root. Shoot growth decreased when root growth was restricted. Both characteristics were closely related irrespective of the cause of root growth limitation by either compaction or water saturation. It is therefore concluded that shoot growth in both the compacted and the wet soil was regulated by root growth. The main factor impeding root growth in compacted soil was penetration resistance, not soil aeration.FAX no corresponding author: +49551 5056299  相似文献   
63.
4,4′-Diisothiocyano-1,2-diphenylethane-2,2′-disulfonic acid (H2DIDS) known as an irreversible inhibitor of the anion transport in red blood cells (Cabantchik, Z.I. and Rothstein, A. (1972) J. Membrane Biol. 10, 311–330) blocks also the uptake of bile acids and of some foreign substrates in isolated hepatocytes (Petzinger, E. and Frimmer, M. (1980) Arch. Toxicol. 44, 127–135). [3H]H2DIDS was used for labeling of membrane proteins probably involved in anion transport of rat liver cells. The membrane proteins modified in vitro by [3H]H2DIDS were compared with those labeled by brominated taurodehydrocholic acid. The latter is one of a series of suitable taurocholate derivatives, all able to bind to defined membrane proteins of hepatocytes and also known to block the uptake of bile acids as well as of phallotoxins and of cholecystographic agents (Ziegler, K., Frimmer, M., Möller, W. and Fasold, H. (1982) Naunyn-Schmiedeberg's Arch. Pharmacol. 319, 254–261). The radiolabeled proteins were compared after SDS-electrophoresis with and without reducing agent present, solubilization by detergents, two-dimensional electrophoresis and after separation of integral and peripheral proteins. Our results suggest that the anion transport system of liver cells cannot distinguish between bile acids and the anionic stilbene derivative (DIDS). The labeling pattern for both kinds of affinity labels was very similar. Various combinations of separation techniques gave evidence that the radiolabeled membrane proteins are not subunits of a single native channel protein.  相似文献   
64.
We have shown previously that ethylene, which accumulates in the air spaces of submerged stem sections of rice (Oryza sativa L. cv “Habiganj Aman II”), is involved in regulating the growth response caused by submergence. The role of gibberellins in the submergence response was studied using tetcyclacis (TCY), a new plant growth retardant, which inhibits gibberellin biosynthesis. Stem sections excised from plants that had been watered with a solution of 1 micromolar TCY for 7 to 10 days did not elongate when submerged in the same solution or when exposed to 1 microliter per liter ethylene in air. Gibberellic acid (GA3) at 0.3 micromolar overcame the effect of TCY and restored the rapid internodal elongation in submerged and ethylene-treated sections to the levels observed in control sections that had not been treated with TCY. The effect of 0.01 to 0.2 micromolar GA3 on internodal elongation was enhanced two- to eight-fold when 1 microliter per liter ethylene was added to the air passing through the chamber in which the sections were incubated. GA3 and ethylene caused a similar increase in cell division and cell elongation in rice internodes. Thus, ethylene may cause internodal elongation in rice by increasing the activity of endogenous GAs. In internodes from which the leaf sheath had been peeled off, growth in response to submergence, ethylene and GA3 was severely inhibited by light.  相似文献   
65.
The effect of various inhibitors of insulin secretion such as mannoheptulose (20 mM), atropine (1 mM), diphenylhydantoin (20 microng/ml), high concentration of Mg++ (5.3 mM) in the presence of 20 mM glucose (control) on insulin content and secretion from collagenase-isolated rat pancreatic islets was studied in vitro by cultivation of islets up to 5 or 9 days in glass Petri dishes without attachment. In a following short-term incubation for 60 min the glucose-induced insulin release without and with theophylline (5 mM) was investigated. Islets cultivated at 5 mM glucose and at 20 mM glucose with the inhibitors mannoheptulose or atropine lost the responsiveness to glucose and theophylline whereas such islets cultivated at 20 mM glucose alone or with diphenylhydantoin (DPH) or 5.3 mg Mg++ showed a stimulation of insulin secretion by glucose and theophylline. Compared, however, with freshly isolated islets all cultivated islets were restricted in their maximal glucose response and this defect was not evoked alone by quantitative changes in islet insulin content. Nevertheless, culture conditions which facilitate a net increase of insulin (content and release) during cultivation influenced also positively the glucose-induced insulin release without and with 5 mM theophylline in the following short-term experiments.  相似文献   
66.
M. Goller  R. Hampp  H. Ziegler 《Planta》1982,156(3):255-263
Adenylate levels in chloroplasts, mitochondria and the cytosol of oat mesophyll protoplasts were determined under light and dark conditions, in the absence and presence of plasmalemma-permeable inhibitors of electron transfer and uncouplers of phosphorylation. This was achieved using a microgradient technique which allowed an integrated homogenization and fractionation of protoplasts within 60 s (Hampp et al. 1982, Plant Physiol. 69, 448–455), under conditions which quench bulk activities of metabolic interconversion in less than 2 s. In illuminated controls, ATP/ADP ratios were found to be 2.1 in chloroplasts, about unity in mitochondria, and 11 in the cytosol; whereas, in the dark, this ratio only showed a large drop in chloroplasts (0.4). None of the compounds used [carbonylcyanide m-chlorophenylhydrazone (CCCP), carbonylcyanide p-trifluoromethoxy-phenylhydrazone (FCCP), antimycin A, dibromothymoquinone (DBMIB), dichlorophenyldi-methylurea (DCMU), or salicylhydroxamic acid (SHAM)] affected the stroma adenylate ratio in the dark. Under illumination, however, the ATP/ADP ratios were partly reduced in the presence of antimycin (inhibitor of cyclic photophosphorylation) and of DCMU (inhibitor of linear electron flow), while in the presence of DBMIB, DCMU+ antimycin (inhibition of both cyclic and linear electron flow), and CCCP (uncoupling) the ratio obtained was the same as that occurring in the dark. In contrast, mitochondrial adenylate levels did not exhibit large variations under the various treatments. The cytosolic ATP/ADP ratio, however, showed dramatic changes: in darkened protoplasts, cytosolic values dropped to 0.2 and 0.1 in the presence of uncouplers and antimycin, respectively, while SHAM did not induce any significant alteration. In the light, a similar pronounced decrease in ATP levels was observed only after the application of uncouplers or inhibitors of both mitochondrial and photosynthetic electron transport, whereas selective inhibition of the latter was largely ineffective in reducing the cytosolic ATP/ADP ratio. Thus, the results show that the antimycin-sensitive electron transport is, potentially, equally active in light and darkness. In addition, they indicate that antimycin-insensitive electron transport in mitochondria (alternative pathway) does not significantly contribute to the cytosolic energy state.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DBMIB dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropy-p-benzoquinone) - DCMU dichlorophenyldimethylurea - FCCP carbonylcyanide-p-trifluoromethoxy-phenylhydrazone - SHAM sancylhydroxamic acid  相似文献   
67.
J. Schönherr  H. Ziegler 《Planta》1980,147(4):345-354
The water permeability of periderm membranes stripped from mature trees of Betula pendula Roth was investigated. The diffusion of water was studied using the system water/membrane/water, and transpiration was measured using the system water/membrane/water vapor. Betula periderm consists of successive periderm layers each made up of about 5 heavily suberized cell layers and a varying number of cell layers that are little suberized, if at all. It is shown that these layers act as resistances in series. The permeability coefficient of the diffusion of water (P d) can be predicted with 79% accuracy from the reciprocal of the membrane weight (x in mg cm-2) by means of the linear equation P d=14.69·10-7 x-0.73·10-7. For example, the P d of a periderm membrane having a weight of 10 mg cm-2 (approx. 250 m thick) is 7.4·10-8 cm s-1, which is comparable to the permeability of cuticles. This comparison shows that on a basis of unit thickness, Betula periderm is quite permeable to water as cuticles have the same resistance with a thickness of only 0.5 to 3 m. It is argued that this comparatively high water permeability of birch periderm is due to the fact that middle lamellae and the primary walls of periderm cells are not at all, or only incompletely suberized and, therefore, form a hydrophilic network within which the water can flow. This conclusion is based on the following observations: (1) Middle lamellae and primary walls stain strongly with toluidine blue, which shows them to be polar. (2) If silver ions are added as tracer for the flow of water, they are found only in the middle lamellae, primary walls, and in plasmodesmata, while no silver can be detected in the suberized walls. (3) Permeability coefficients of transpiration strongly depend on water activity. This shows conclusively that water flows across Betula periderm via a polar pathway. It is further argued that liquid continuity is likely to be maintained under all physiological conditions in the network formed by middle lamellae and primary walls. On the other hand, the lumina of periderm cells, intercellular air spaces in the lenticels, and even the pores in the suberized walls (remainders of plasmodesmata) will drain at a humidity of 95% and below. Due to the presence of intercellulars the permeability coefficient of lenticels is much greater than that of the periderm. A substantial amount of the total water, therefore, flows as vapor through lenticels even though they cover only 3% of the surface.Abbreviations PM perideron membrane - P d permeability coefficient for diffusion of water - P tt permeability coefficient of transpiration - MES (N-morpholino)ethane sulfonic acid  相似文献   
68.
69.
The uptake and efflux of 22Na and 42K were studied in denuded Rana pipiens oocytes following progesterone induction of the resumption of meiotic maturation. Coincident with the breakdown of the large nucleus, or germinal vesicle, there is a virtual disappearance of K+ permeability of the oocyte plasma membrane. Only about 1–2% of the total [K+]i is exchanged by completion of nuclear breakdown (8–10 hr) and accounts for the finding that there is no detectable change in total [K+]i during the first meiotic division (20–24 hr). In the case of Na+, influx, exchange, and efflux kinetics were unchanged during the first meiotic division, with 20 and 35% of the total oocyte Na+ exchanging by the completion of nuclear breakdown and first meiotic division, respectively. Removal of Na+ from the incubation medium produced and earlier nuclear breakdown, whereas a K-free medium delayed breakdown. There was no effect of 10 μm/ml tetrodotoxin or 10?5M strophanthidin on the time course of nuclear breakdown. Thus one action of progesterone appears to be a selective turning off of “K channels” in the oocyte plasma membrane. The disappearance of K selectivity of the oocyte plasma membrane coincides with plasma membrane depolarization, as well as nuclear swelling and breakdown.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号