首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1582篇
  免费   123篇
  1705篇
  2024年   3篇
  2023年   6篇
  2022年   11篇
  2021年   33篇
  2020年   16篇
  2019年   23篇
  2018年   23篇
  2017年   21篇
  2016年   46篇
  2015年   68篇
  2014年   77篇
  2013年   104篇
  2012年   148篇
  2011年   148篇
  2010年   93篇
  2009年   82篇
  2008年   102篇
  2007年   114篇
  2006年   91篇
  2005年   90篇
  2004年   72篇
  2003年   77篇
  2002年   80篇
  2001年   12篇
  2000年   15篇
  1999年   7篇
  1998年   15篇
  1997年   9篇
  1996年   14篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1988年   5篇
  1987年   3篇
  1985年   4篇
  1984年   5篇
  1982年   3篇
  1981年   5篇
  1973年   5篇
  1970年   4篇
  1960年   2篇
  1958年   3篇
  1957年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1949年   2篇
排序方式: 共有1705条查询结果,搜索用时 0 毫秒
151.
152.
153.
154.
Escherichia coli cells with a point mutation in the dnaN gene causing the amino acid change Gly157 to Cys, were found to underinitiate replication and grow with a reduced origin and DNA concentration. The mutant β clamp also caused excessive conversion of ATP-DnaA to ADP-DnaA. The DnaA protein was, however, not the element limiting initiation of replication. Overproduction of DnaA protein, which in wild-type cells leads to over-replication, had no effect in the dnaN(G157C) mutant. Origins already opened by DnaA seemed to remain open for a prolonged period, with a stage of initiation involving β clamp loading, presumably limiting the initiation process. The existence of opened origins led to a moderate SOS response. Lagging strand synthesis, which also requires loading of the β clamp, was apparently unaffected. The result indicates that some aspects of β clamp activity are specific to the origin. It is possible that the origin specific activities of β contribute to regulation of initiation frequency.  相似文献   
155.
Mutations in the mouse ATRN gene, which encodes attractin, offer links between this protein and pigmentation, metabolism, immune status and neurodegeneration. However, the mechanisms of attractin action are not understood. The protein was first identified in humans in a circulating form in serum. A protease activity was postulated similar to the membrane-bound ectoenzyme DP4/CD26. In the last decade, both DP4/CD26 and attractin were controversially described to be the major source of human serum DP4 activity. We purified attractin from human plasma, and found that the DP4-like activity of the preparation shows nearly identical kinetic properties to that of recombinant human DP4. In contrast, the native electrophoretic behavior of this activity is clearly different from human and porcine DP4, but co-migrates with the protein band identified as attractin by Western blotting and N-terminal sequencing. Nevertheless, a DP4 impurity could be demonstrated in purified plasma attractin and the activity could be removed by ADA affinity chromatography, resulting in a homogenous attractin preparation without DP4 activity. These results are substantiated by expression of different attractin isoforms, in which no DP4 activity was found either. This indicates that the multidomain protein attractin acts as a receptor or adhesion protein rather than a protease.  相似文献   
156.
The xanthophyll cycle represents one of the important photoprotection mechanisms in plant cells. In the present review, we summarize current knowledge about the violaxanthin cycle of vascular plants, green and brown algae, and the diadinoxanthin cycle of the algal classes Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. We address the biochemistry of the xanthophyll cycle enzymes with a special focus on protein structure, co-substrate requirements and regulation of enzyme activity. We present recent ideas regarding the structural basis of xanthophyll cycle-dependent photoprotection, including different models for the mechanism of non-photochemical quenching of chlorophyll a fluorescence. In a dedicated chapter, we also describe the unique violaxanthin antheraxanthin cycle of the Prasinophyceae, together with its implication for the mechanism of xanthophyll cycle-dependent heat dissipation. The interaction between the diadinoxanthin cycle and alternative electron flow pathways in the chloroplasts of diatoms is an additional topic of this review, and in the last chapter we cover aspects of the importance of xanthophyll cycle-dependent photoprotection for different algal species in their natural environments.  相似文献   
157.
158.
Discrepancy between GLUT4 translocation and glucose uptake after ischemia   总被引:4,自引:0,他引:4  
Objective: Low-flow ischemia results in glucose transporter translocation and in increased glucose uptake. After total ischemia in rat heart, we found no increase in glucose uptake. Here we test the hypothesis that total ischemia is associated with decreased activation of GLUT4 despite translocation. Methods: Isolated working hearts (n=70, Sprague–Dawley rats) were perfused for 70 min at physiological workload with Krebs–Henseleit buffer containing [2-3H]glucose (5 mmol/l, 0.05 μCi/ml) with either oleate (0.4 mmol/l, 1%BSA) or pyruvate (5 mmol/l, 1%BSA). After 20 min, hearts were subjected to 15 min of total ischemia followed by 35 min of reperfusion. We measured glucose uptake and intracellular free glucose (IFG) using [2-3H]glucose and [14C]sucrose, and determined the distribution of GLUT4 by colocalization immunofluorescence with Na–K ATP-ase. Results: Cardiac power was 10.1 ± 0.90 mW before ischemia and did not differ between groups. Recovery was the same in both groups (55.7 ± 24.8$%). Glucose uptake did not differ between groups before ischemia, and did not increase during reperfusion. Despite evidence of GLUT4 translocation after reperfusion in both groups, IFG did not increase compared with before ischemia. Conclusion: We conclude that there is a discrepancy between glucose transporter availability and glucose uptake after ischemia, which may be due to inhibition of GLUT4 in the plasma membrane. (Mol Cell Biochem 278: 129–137, 2005)  相似文献   
159.
The anaerobic veratrol O-demethylase mediates the transfer of the methyl group of the phenyl methyl ether veratrol to tetrahydrofolate. The primary methyl group acceptor is the cobalt of a corrinoid protein, which has to be in the +1 oxidation state to bind the methyl group. Due to the negative redox potential of the cob(II)/cob(I)alamin couple, autoxidation of the cobalt may accidentally occur. In this study, the reduction of the corrinoid to the superreduced [CoI] state was investigated. The ATP-dependent reduction of the corrinoid protein of the veratrol O-demethylase was shown to be dependent on titanium(III) citrate as electron donor and on an activating enzyme. In the presence of ATP, activating enzyme, and Ti(III), the redox potential versus the standard hydrogen electrode (E SHE) of the cob(II)alamin/cob(I)alamin couple in the corrinoid protein was determined to be −290 mV (pH 7.5), whereas E SHE at pH 7.5 was lower than −450 mV in the absence of either activating enzyme or ATP. ADP, AMP, or GTP could not replace ATP in the activation reaction. The ATP analogue adenosine-5′-(β,γ-imido)triphosphate (AMP-PNP, 2–4 mM) completely inhibited the corrinoid reduction in the presence of ATP (2 mM).  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号