首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1534篇
  免费   119篇
  1653篇
  2024年   3篇
  2023年   6篇
  2022年   11篇
  2021年   31篇
  2020年   15篇
  2019年   22篇
  2018年   22篇
  2017年   21篇
  2016年   45篇
  2015年   66篇
  2014年   75篇
  2013年   102篇
  2012年   143篇
  2011年   148篇
  2010年   89篇
  2009年   79篇
  2008年   98篇
  2007年   112篇
  2006年   88篇
  2005年   88篇
  2004年   70篇
  2003年   76篇
  2002年   77篇
  2001年   8篇
  2000年   13篇
  1999年   7篇
  1998年   15篇
  1997年   9篇
  1996年   14篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   7篇
  1991年   3篇
  1990年   5篇
  1988年   4篇
  1987年   5篇
  1985年   3篇
  1984年   5篇
  1981年   5篇
  1977年   2篇
  1974年   2篇
  1970年   4篇
  1960年   2篇
  1958年   3篇
  1957年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1949年   2篇
排序方式: 共有1653条查询结果,搜索用时 0 毫秒
141.
G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments.  相似文献   
142.
Different marine seaweed species have been shown to harbour specific bacterial communities, however, the extent to which vertical symbiont transmission from parents to offspring contributes to host-specificity is unclear. Here we use fluorescence and electron microscopy as well as 16S rRNA gene-based community analysis to investigate symbiont transmission in members of the three major seaweed groups (green Chlorophyta, red Rhodophyta and brown Phaeophyceae). We found seaweeds employ diverse strategies to transfer symbionts to their progeny. For instance, the green Ulva australis does not appear to have the capacity for vertical transmission. In contrast, the brown Phyllospora comosa adopts a non-selective vertical transmission. The red Delisea pulchra demonstrates weak selectivity in symbiont transmission, while the brown Hormosira banksii exhibits a strongly selective symbiont transfer. Mucilage on the gametes appears to facilitate vertical transmission and transferred bacteria have predicted properties that could support early development of the seaweeds. Previous meta-analysis has indicated that vertical transmission is rare in aquatic compared to terrestrial environments, however, our results contribute to the growing evidence that this might not be the case and that instead vertical transmission with various degrees of symbiont selection occurs in the ecologically important group of seaweeds.  相似文献   
143.
144.
145.
146.
Escherichia coli cells with a point mutation in the dnaN gene causing the amino acid change Gly157 to Cys, were found to underinitiate replication and grow with a reduced origin and DNA concentration. The mutant β clamp also caused excessive conversion of ATP-DnaA to ADP-DnaA. The DnaA protein was, however, not the element limiting initiation of replication. Overproduction of DnaA protein, which in wild-type cells leads to over-replication, had no effect in the dnaN(G157C) mutant. Origins already opened by DnaA seemed to remain open for a prolonged period, with a stage of initiation involving β clamp loading, presumably limiting the initiation process. The existence of opened origins led to a moderate SOS response. Lagging strand synthesis, which also requires loading of the β clamp, was apparently unaffected. The result indicates that some aspects of β clamp activity are specific to the origin. It is possible that the origin specific activities of β contribute to regulation of initiation frequency.  相似文献   
147.
Mutations in the mouse ATRN gene, which encodes attractin, offer links between this protein and pigmentation, metabolism, immune status and neurodegeneration. However, the mechanisms of attractin action are not understood. The protein was first identified in humans in a circulating form in serum. A protease activity was postulated similar to the membrane-bound ectoenzyme DP4/CD26. In the last decade, both DP4/CD26 and attractin were controversially described to be the major source of human serum DP4 activity. We purified attractin from human plasma, and found that the DP4-like activity of the preparation shows nearly identical kinetic properties to that of recombinant human DP4. In contrast, the native electrophoretic behavior of this activity is clearly different from human and porcine DP4, but co-migrates with the protein band identified as attractin by Western blotting and N-terminal sequencing. Nevertheless, a DP4 impurity could be demonstrated in purified plasma attractin and the activity could be removed by ADA affinity chromatography, resulting in a homogenous attractin preparation without DP4 activity. These results are substantiated by expression of different attractin isoforms, in which no DP4 activity was found either. This indicates that the multidomain protein attractin acts as a receptor or adhesion protein rather than a protease.  相似文献   
148.
The xanthophyll cycle represents one of the important photoprotection mechanisms in plant cells. In the present review, we summarize current knowledge about the violaxanthin cycle of vascular plants, green and brown algae, and the diadinoxanthin cycle of the algal classes Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. We address the biochemistry of the xanthophyll cycle enzymes with a special focus on protein structure, co-substrate requirements and regulation of enzyme activity. We present recent ideas regarding the structural basis of xanthophyll cycle-dependent photoprotection, including different models for the mechanism of non-photochemical quenching of chlorophyll a fluorescence. In a dedicated chapter, we also describe the unique violaxanthin antheraxanthin cycle of the Prasinophyceae, together with its implication for the mechanism of xanthophyll cycle-dependent heat dissipation. The interaction between the diadinoxanthin cycle and alternative electron flow pathways in the chloroplasts of diatoms is an additional topic of this review, and in the last chapter we cover aspects of the importance of xanthophyll cycle-dependent photoprotection for different algal species in their natural environments.  相似文献   
149.
150.
Discrepancy between GLUT4 translocation and glucose uptake after ischemia   总被引:4,自引:0,他引:4  
Objective: Low-flow ischemia results in glucose transporter translocation and in increased glucose uptake. After total ischemia in rat heart, we found no increase in glucose uptake. Here we test the hypothesis that total ischemia is associated with decreased activation of GLUT4 despite translocation. Methods: Isolated working hearts (n=70, Sprague–Dawley rats) were perfused for 70 min at physiological workload with Krebs–Henseleit buffer containing [2-3H]glucose (5 mmol/l, 0.05 μCi/ml) with either oleate (0.4 mmol/l, 1%BSA) or pyruvate (5 mmol/l, 1%BSA). After 20 min, hearts were subjected to 15 min of total ischemia followed by 35 min of reperfusion. We measured glucose uptake and intracellular free glucose (IFG) using [2-3H]glucose and [14C]sucrose, and determined the distribution of GLUT4 by colocalization immunofluorescence with Na–K ATP-ase. Results: Cardiac power was 10.1 ± 0.90 mW before ischemia and did not differ between groups. Recovery was the same in both groups (55.7 ± 24.8$%). Glucose uptake did not differ between groups before ischemia, and did not increase during reperfusion. Despite evidence of GLUT4 translocation after reperfusion in both groups, IFG did not increase compared with before ischemia. Conclusion: We conclude that there is a discrepancy between glucose transporter availability and glucose uptake after ischemia, which may be due to inhibition of GLUT4 in the plasma membrane. (Mol Cell Biochem 278: 129–137, 2005)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号