首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2064篇
  免费   150篇
  2023年   6篇
  2022年   12篇
  2021年   37篇
  2020年   17篇
  2019年   25篇
  2018年   34篇
  2017年   43篇
  2016年   55篇
  2015年   76篇
  2014年   100篇
  2013年   132篇
  2012年   183篇
  2011年   179篇
  2010年   100篇
  2009年   97篇
  2008年   122篇
  2007年   144篇
  2006年   116篇
  2005年   117篇
  2004年   93篇
  2003年   95篇
  2002年   94篇
  2001年   36篇
  2000年   40篇
  1999年   25篇
  1998年   20篇
  1997年   16篇
  1996年   17篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   12篇
  1991年   14篇
  1990年   11篇
  1989年   7篇
  1988年   10篇
  1987年   11篇
  1986年   6篇
  1985年   8篇
  1984年   7篇
  1981年   9篇
  1979年   4篇
  1977年   4篇
  1974年   3篇
  1973年   6篇
  1972年   3篇
  1970年   4篇
  1958年   3篇
  1951年   2篇
  1949年   2篇
排序方式: 共有2214条查询结果,搜索用时 15 毫秒
51.
The biosynthesis of non-ribosomal peptide and polyketide natural products is facilitated by multimodular enzymes that contain domains responsible for the sequential condensation of amino and carboxylic subunits. These conserved domains provide molecular targets for the discovery of natural products from microbial metagenomes. This study demonstrates the application of tag-encoded FLX amplicon pyrosequencing (TEFAP) targeting non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes as a method for determining the identity and diversity of natural product biosynthesis genes. To validate this approach, we assessed the diversity of NRPS and PKS genes within the microbiomes of six Australian marine sponge species using both TEFAP and metagenomic whole-genome shotgun sequencing approaches. The TEFAP approach identified 100 novel ketosynthase (KS) domain sequences and 400 novel condensation domain sequences within the microbiomes of the six sponges. The diversity of KS domains within the microbiome of a single sponge species Scopalina sp. exceeded that of any previously surveyed marine sponge. Furthermore, this study represented the first to target the condensation domain from NRPS biosynthesis and resulted in the identification of a novel condensation domain lineage. This study highlights the untapped potential of Australian marine sponges for the isolation of novel bioactive natural products. Furthermore, this study demonstrates that TEFAP approaches can be applied to functional genes, involved in natural product biosynthesis, as a tool to aid natural product discovery. It is envisaged that this approach will be used across multiple environments, offering an insight into the biological processes that influence the production of secondary metabolites.  相似文献   
52.
In high-grade gliomas, the identification of patients that could benefit from EGFR inhibitors remains a challenge, hindering the use of these agents. Using xenografts models, we evaluated the antitumor effect of the combined treatment “gefitinib + radiotherapy” and aimed to identify the profile of responsive tumors. Expression of phosphorylated proteins involved in the EGFR-dependent signaling pathways was analyzed in 10 glioma models. We focused on three models of anaplastic oligodendrogliomas (TCG2, TCG3 and TCG4) harboring high levels of phospho-EGFR, phospho-AKT and phospho-MEK1. They were treated with gefitinib (GEF 75 mg/kg/day x 5 days/week, for 2 weeks) and/or fractionated radiotherapy (RT: 5x2Gy/week for 2 weeks). Our results showed that GEF and/or RT induced significant tumor growth delays. However, only the TCG3 xenografts were highly responsive to the combination GEF+RT, with ∼50% of tumor cure. Phosphoproteins analysis five days after treatment onset demonstrated in TCG3 xenografts, but not in TCG2 model, that the EGFR-dependent pathways were inhibited after GEF treatment. Moreover, TCG3-bearing mice receiving GEF monotherapy exhibited a transient beneficial therapeutic response, rapidly followed by tumor regrowth, along with a major vascular remodeling. Taken together, our data evoked an “EGFR-addictive” behavior for TCG3 tumors. This study confirms that combination of gefitinib with fractionated irradiation could be a potent therapeutic strategy for anaplastic oligodendrogliomas harboring EGFR abnormalities but this treatment seems mainly beneficial for “EGFR-addictive” tumors. Unfortunately, neither the usual molecular markers (EGFR amplification, PTEN loss) nor the basal overexpression of phosphoproteins were useful to distinguish this responsive tumor. Evaluating the impact of TKIs on the EGFR-dependent pathways during the treatment might be more relevant, and requires further validation.  相似文献   
53.
Recent investigations addressing the role of the synaptic multiadaptor molecule AKAP5 in human emotion and behavior suggest that the AKAP5 Pro100Leu polymorphism (rs2230491) contributes to individual differences in affective control. Carriers of the less common Leu allele show a higher control of anger as indicated by behavioral measures and dACC brain response on emotional distracters when compared to Pro homozygotes. In the current fMRI study we used an emotional working memory task according to the n-back scheme with neutral and negative emotional faces as target stimuli. Pro homozygotes showed a performance advantage at the behavioral level and exhibited enhanced activation of the amygdala and fusiform face area during working memory for emotional faces. On the other hand, Leu carriers exhibited increased activation of the dACC during performance of the 2-back condition. Our results suggest that AKAP5 Pro100Leu effects on emotion processing might be task-dependent with Pro homozygotes showing lower control of emotional interference, but more efficient processing of task-relevant emotional stimuli.  相似文献   
54.
Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-β is associated with the pathogenesis of Alzheimer''s disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms underlying the molecular pathology of the disease. We identified calreticulin as novel amyloid precursor protein interaction partner that binds to the γ-secretase cleavage site within amyloid precursor protein and showed that this Ca2+- and N-glycan-independent interaction is mediated by amino acids 330–344 in the C-terminal C-domain of calreticulin. Co-immunoprecipitation confirmed that calreticulin is not only associated with amyloid precursor protein but also with the γ-secretase complex members presenilin and nicastrin. Calreticulin was detected at the cell surface by surface biotinylation of cells overexpressing amyloid precursor protein and was co-localized by immunostaining with amyloid precursor protein and presenilin at the cell surface of hippocampal neurons. The P-domain of calreticulin located between the N-terminal N-domain and the C-domain interacts with presenilin, the catalytic subunit of the γ-secretase complex. The P- and C-domains also interact with nicastrin, another functionally important subunit of this complex. Transfection of amyloid precursor protein overexpressing cells with full-length calreticulin leads to a decrease in amyloid-β42 levels in culture supernatants, while transfection with the P-domain increases amyloid-β40 levels. Similarly, application of the recombinant P- or C-domains and of a synthetic calreticulin peptide comprising amino acid 330–344 to amyloid precursor protein overexpressing cells result in elevated amyloid-β40 and amyloid-β42 levels, respectively. These findings indicate that the interaction of calreticulin with amyloid precursor protein and the γ-secretase complex regulates the proteolytic processing of amyloid precursor protein by the γ-secretase complex, pointing to calreticulin as a potential target for therapy in Alzheimer''s disease.  相似文献   
55.
A putative driver of global amphibian decline is the panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd). While Bd has been documented across continental Africa, its distribution in West Africa remains ambiguous. We tested 793 West African amphibians (one caecilian and 61 anuran species) for the presence of Bd. The samples originated from seven West African countries - Bénin, Burkina Faso, Côte d''Ivoire, Ghana, Guinea, Liberia, Sierra Leone - and were collected from a variety of habitats, ranging from lowland rainforests to montane forests, montane grasslands to humid and dry lowland savannahs. The species investigated comprised various life-history strategies, but we focused particularly on aquatic and riparian species. We used diagnostic PCR to screen 656 specimen swabs and histology to analyse 137 specimen toe tips. All samples tested negative for Bd, including a widespread habitat generalist Hoplobatrachus occipitalis which is intensively traded on the West African food market and thus could be a potential dispersal agent for Bd. Continental fine-grained (30 arc seconds) environmental niche models suggest that Bd should have a broad distribution across West Africa that includes most of the regions and habitats that we surveyed. The surprising apparent absence of Bd in West Africa indicates that the Dahomey Gap may have acted as a natural barrier. Herein we highlight the importance of this Bd-free region of the African continent - especially for the long-term conservation of several threatened species depending on fast flowing forest streams (Conraua alleni (“Vulnerable”) and Petropedetes natator (“Near Threatened”)) as well as the “Critically Endangered” viviparous toad endemic to the montane grasslands of Mount Nimba (Nimbaphrynoides occidentalis).  相似文献   
56.
57.

Introduction

Though xenogeneic acellular scaffolds are frequently used for surgical reconstruction, knowledge of their mechanical properties is lacking. This study compared the mechanical, histological and ultrastructural properties of various native and acellular specimens.

Materials and Methods

Porcine esophagi, ureters and skin were tested mechanically in a native or acellular condition, focusing on the elastic modulus, ultimate tensile stress and maximum strain. The testing protocol for soft tissues was standardized, including the adaption of the tissue’s water content and partial plastination to minimize material slippage as well as templates for normed sample dimensions and precise cross-section measurements. The native and acellular tissues were compared at the microscopic and ultrastructural level with a focus on type I collagens.

Results

Increased elastic modulus and ultimate tensile stress values were quantified in acellular esophagi and ureters compared to the native condition. In contrast, these values were strongly decreased in the skin after acellularization. Acellularization-related decreases in maximum strain were found in all tissues. Type I collagens were well-preserved in these samples; however, clotting and a loss of cross-linking type I collagens was observed ultrastructurally. Elastins and fibronectins were preserved in the esophagi and ureters. A loss of the epidermal layer and decreased fibronectin content was present in the skin.

Discussion

Acellularization induces changes in the tensile properties of soft tissues. Some of these changes appear to be organ specific. Loss of cross-linking type I collagen may indicate increased mechanical strength due to decreasing transverse forces acting upon the scaffolds, whereas fibronectin loss may be related to decreased load-bearing capacity. Potentially, the alterations in tissue mechanics are linked to organ function and to the interplay of cells and the extracellular matrix, which is different in hollow organs when compared to skin.  相似文献   
58.
Elms (Ulmus spp.) have long been appreciated for their environmental tolerance, landscape and ornamental value, and the quality of their wood. Although elm trees are extremely hardy against abiotic stresses such as wind and pollution, they are susceptible to attacks of biotic stressors. Over 100 phytopathogens and invertebrate pests are associated with elms: fungi, bacteria and insects like beetles and moths, and to a lesser extent aphids, mites, viruses and nematodes. While the biology of the pathogen and insect vector of the Dutch elm disease has been intensively studied, less attention has been paid so far to the defence mechanisms of elms to other biotic stressors. This review highlights knowledge of direct and indirect elm defences against biotic stressors focusing on morphological, chemical and gene regulation aspects. First, we report how morphological defence mechanisms via barrier formation and vessel occlusion prevent colonisation and spread of wood- and bark-inhabiting fungi and bacteria. Second, we outline how secondary metabolites such as terpenoids (volatile terpenoids, mansonones and triterpenoids) and phenolics (lignans, coumarins, flavonoids) in leaves and bark are involved in constitutive and induced chemical defence mechanisms of elms. Third, we address knowledge on how the molecular regulation of elm defence is orchestrated through the interaction of a huge variety of stress- and defence-related genes. We conclude by pointing to the gaps of knowledge on the chemical and molecular mechanisms of elm defence against pest insects and diseases. An in-depth understanding of defence mechanisms of elms will support the development of sustainable integrated management of pests and diseases attacking elms.  相似文献   
59.
60.
The scabies mite, Sarcoptes scabiei, is an obligate parasite of the skin that infects humans and other animal species, causing scabies, a contagious disease characterized by extreme itching. Scabies infections are a major health problem, particularly in remote Indigenous communities in Australia, where co-infection of epidermal scabies lesions by Group A Streptococci or Staphylococcus aureus is thought to be responsible for the high rate of rheumatic heart disease and chronic kidney disease. We collected and separately sequenced mite DNA from several pools of thousands of whole mites from a porcine model of scabies (S. scabiei var. suis) and two human patients (S. scabiei var. hominis) living in different regions of northern Australia. Our sequencing samples the mite and its metagenome, including the mite gut flora and the wound micro-environment. Here, we describe the mitochondrial genome of the scabies mite. We developed a new de novo assembly pipeline based on a bait-and-reassemble strategy, which produced a 14 kilobase mitochondrial genome sequence assembly. We also annotated 35 genes and have compared these to other Acari mites. We identified single nucleotide polymorphisms (SNPs) and used these to infer the presence of six haplogroups in our samples, Remarkably, these fall into two closely-related clades with one clade including both human and pig varieties. This supports earlier findings that only limited genetic differences may separate some human and animal varieties, and raises the possibility of cross-host infections. Finally, we used these mitochondrial haplotypes to show that the genetic diversity of individual infections is typically small with 1–3 distinct haplotypes per infestation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号