首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1533篇
  免费   118篇
  2023年   6篇
  2022年   7篇
  2021年   31篇
  2020年   15篇
  2019年   22篇
  2018年   22篇
  2017年   21篇
  2016年   45篇
  2015年   66篇
  2014年   75篇
  2013年   102篇
  2012年   143篇
  2011年   148篇
  2010年   89篇
  2009年   79篇
  2008年   98篇
  2007年   112篇
  2006年   89篇
  2005年   88篇
  2004年   70篇
  2003年   76篇
  2002年   77篇
  2001年   9篇
  2000年   13篇
  1999年   7篇
  1998年   15篇
  1997年   9篇
  1996年   14篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1988年   4篇
  1987年   3篇
  1985年   3篇
  1984年   5篇
  1981年   5篇
  1977年   2篇
  1974年   4篇
  1972年   3篇
  1970年   4篇
  1960年   2篇
  1958年   3篇
  1957年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1949年   2篇
排序方式: 共有1651条查询结果,搜索用时 499 毫秒
51.
52.
Borna disease virus (BDV) is a non‐segmented negative‐stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell–cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell–cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin‐mediated processing of GP and demonstrate that cleaved and fusion‐active GP is strictly necessary for the cell‐to‐cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus‐glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection.  相似文献   
53.
The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro.  相似文献   
54.
55.
Cobamides (Cbas) are essential cofactors of reductive dehalogenases (RDases) in organohalide-respiring bacteria (OHRB). Changes in the Cba structure can influence RDase function. Here, we report on the cofactor versatility or selectivity of Desulfitobacterium RDases produced either in the native organism or heterologously. The susceptibility of Desulfitobacterium hafniense strain DCB-2 to guided Cba biosynthesis (i.e. incorporation of exogenous Cba lower ligand base precursors) was analysed. Exogenous benzimidazoles, azabenzimidazoles and 4,5-dimethylimidazole were incorporated by the organism into Cbas. When the type of Cba changed, no effect on the turnover rate of the 3-chloro-4-hydroxy-phenylacetate-converting enzyme RdhA6 and the 3,5-dichlorophenol-dehalogenating enzyme RdhA3 was observed. The impact of the amendment of Cba lower ligand precursors on RDase function was also investigated in Shimwellia blattae, the Cba producer used for the heterologous production of Desulfitobacterium RDases. The recombinant tetrachloroethene RDase (PceAY51) appeared to be non-selective towards different Cbas. However, the functional production of the 1,2-dichloroethane-dihaloeliminating enzyme (DcaA) of Desulfitobacterium dichloroeliminans was completely prevented in cells producing 5,6-dimethylbenzimidazolyl-Cba, but substantially enhanced in cells that incorporated 5-methoxybenzimidazole into the Cba cofactor. The results of the study indicate the utilization of a range of different Cbas by Desulfitobacterium RDases with selected representatives apparently preferring distinct Cbas.  相似文献   
56.
Ecosystems - Saltmarshes provide many valuable ecosystem services including storage of a large amount of ‘blue carbon’ within their soils. To date, up to 50% of the world’s...  相似文献   
57.
Vibrio cholerae is an aquatic bacterium with the potential to infect humans and cause the cholera disease. While most bacteria have single chromosomes, the V. cholerae genome is encoded on two replicons of different size. This study focuses on the DNA replication and cell division of this bi‐chromosomal bacterium during the stringent response induced by starvation stress. V. cholerae cells were found to initially shut DNA replication initiation down upon stringent response induction by the serine analog serine hydroxamate. Surprisingly, cells temporarily restart their DNA replication before finally reaching a state with fully replicated single chromosome sets. This division‐replication pattern is very different to that of the related single chromosome model bacterium Escherichia coli. Within the replication restart phase, both chromosomes of V. cholerae maintained their known order of replication timing to achieve termination synchrony. Using flow cytometry combined with mathematical modeling, we established that a phase of cellular regrowth be the reason for the observed restart of DNA replication after the initial shutdown. Our study shows that although the stringent response induction itself is widely conserved, bacteria developed different ways of how to react to the sensed nutrient limitation, potentially reflecting their individual lifestyle requirements.  相似文献   
58.
59.
Cemented femoral stems have shown decreased longevity compared to cementless implants in hip revision arthroplasty. The aim of this study was to evaluate the effect of an amphiphilic bonder on bone cement stability in a biomechanical femur expulsion test. A simplified hip simulator test setup with idealised femur stem specimens was carried out. The stems were implanted into bovine femurs (group 1: no bonder, n=10; group 2: bonder including glutaraldehyde, n=10; group 3: bonder without glutaraldehyde, n=10). A dynamic loading (maximum load: 800 N; minimum load: 100 N; frequency: 3 Hz; 105 cycles) was performed. Subsequently, the stem specimens were expulsed axially out of their implant beds and maximum load at failure was recorded. The static controls showed a mean maximum load to failure of 4123 N in group 1, 8357.5 N in group 2 and 5830.8 N in group 3. After dynamic loading, the specimens of group 2 reached the highest load to failure (8191.5 N), followed by group 3 (5649.5 N) and group 1 (3462 N), respectively. In group 2, we observed nine periprosthetic fractures at a load of 8400 N without signs of interface loosening. Application of an amphiphilic bonder led to a significant improvement of bonding stability, especially when glutaraldehyde was added to the bonder. This technique might offer an increased longevity of cemented femur revision stems in total hip replacement.  相似文献   
60.
Structural and functional evolution of the P2Y12-like receptor group   总被引:1,自引:0,他引:1  
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号