首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   4篇
  2016年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   4篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
11.
The orientation of plant root growth is modulated by developmental as well as environmental cues. Among the environmental factors, gravity has been extensively studied because of its overpowering effects in modulating root growth direction. However, our knowledge of the effects of other abiotic signals that influence root growth direction is largely unknown. Recently, we have shown that high salinity can modify root growth direction by inducing rapid amyloplast degradation in root columella cells of Arabidopsis thaliana. By exploiting salt overly sensitive (sos) mutants and PIN2 expression analyses, we have shown that the altered root growth direction in response to salt is mediated by ion disequilibrium and is correlated with PIN2 mRNA abundance and expression and localization of the protein. Our study demonstrates that the SOS pathway may mediate this process. Here we discuss our data from broader perspectives. We propose that salt-induced modification of root growth direction is a salt-avoidance behavior, which is an active adaptive mechanism for plants grown under saline conditions. Furthermore, high salinity also stimulates alteration of gravitropic growth of shoots. These findings illustrate that plants have a fine and sophisticated sensory and communication system that enable plants to dynamically and efficiently cope with rapidly changing environment.Key words: abidopsis, adaptation, avoidance, root, salt stress, tropic growthOwing to their sessile nature, plant roots are constantly bombarded with various environmental stimuli from the soil, such as gravity, physical obstacles and imbalanced distribution of water and/or nutrients and high salinity. Where to grow is an important developmental decision in the life cycle of a plant that is crucial for its adaptation and the subsequent reproductive success. The proper orientation of root growth is shaped by both the developmental inputs and external signals.1,2 The overwhelming environmental factor that modulates root growth direction is gravity, and plant primary roots grow downward toward the gravity vector. This directed growth of root in response to gravity is named as tropic growth to gravity or gravitropism. Studies of gravity perception and signaling pathway of the root cap at the primary root of Arabidopsis strongly support the starch statolith hypothesis.3 In this hypothesis, the columella cells in the root cap, which contain sedimentable amyloplasts, are the gravity-perceptive site in roots. The inner columella cells of the second tier have been proposed as making the greatest contribution to root gravitropism.4 Upon gravity stimulation, cytosolic ions such as Ca2+ and rapid cytoplasmic alkalization may be involved in gravity signal transduction.57 Asymmetric distribution of auxin in roots caused by basipetal transport mainly through the auxin efflux carrier PIN-FORMED2 (PIN2), which is distributed asymmetrically within the cells, results in gravitropic root response of the root elongation zone.8,9In contrast to our understanding of gravitropism of root, our knowledge of tropistic responses of root to other major environmental stimuli, such as water availability, imbalanced nutrient distribution and high salinity, and the interplay between these stimuli in determining the directional growth of root remains enigmatic. Recent studies have confirmed the existence of hydrotropism and the molecular genetic basis of the tropistic growth of root to water in determining the final direction of root growth starts to be deciphered.1012 Hydrotropic growth of roots is an important trait for plants to actively find water and to optimize their fitness under drought condition. Salinity is another major constraint to root system development, and limits the productivity of agricultural crops and the distribution of plant species.1315 It is known that salt stress-induced disturbed balance of ions is the primary cause for inhibition of plant growth and subsequent yield reduction. How does root minimize entrance of harmful ions and subsequently avoid salt injury? Does plant have capacity to sense salt signal, and prevent potentially harmful ions reaching root and shoot?Previous studies have shown that plant use different strategies to avoid salt injury at various levels. After Na+ enters the root cells, the Casparian strip can restrict the movements of the harmful ion into the xylem.16 Root cells also avoid salt injury by extruding Na+ actively back to the outside solution. This energy-dependent ion efflux from cytosol across the plasma membrane is mediated by SOS1 gene, a Na+-H+ antiporter, which is regulated by at least other genes, SOS3 (calcium binding protein) and SOS2 (serine/threonine kinase). This is the well characterized SOS (Salt Overly Sensitive) signaling pathway.17,18 Another way for plant root cells to avoid ion injury is to accumulate Na+ into vacuole. Vacuolar compartmentation of Na+ is also in part regulated by Na+-H+ antiporters, such as AtNHX1.19 These findings reveal mechanisms of how plants avoid Na+ injury after passive entrance of sodium ions into root cells. We questioned whether a plant is capable of actively preventing the harmful ions from reaching root cells or escape from high salinity in the environment, and how plant roots respond to changing salt conditions, because salt distribution is unbalanced under natural saline conditions, especially after rain and irrigation. With a new assay that allows us to specifically address how plant roots respond to changing salt levels, we discovered an alternative adaptive mechanism for plant root to avoid salt injury.20We set up a two-layer medium assay in which a sodium ion gradient would be generated. A normal nutrient agar medium is at the top of the growth bottle and an agar with salt-stressed medium is in the bottom of the bottle. This simple assay allows us to monitor root growth and orientation. The roots of the wild type seedlings penetrated the interface of the layers and grew straight downwards exhibiting gravitropism, when both layers were MS media. In contrast, when the bottom medium contained NaCl, roots of seedlings grew downward first, and then curved and grew upward toward the lower levels of salt. Roots started to bend upward at an early stage even before contacting high-salt medium (250 mM NaCl) on the bottom. The results indicate that roots can sense ion gradients in the growing environment and transduce the signal, combine with internal signals to make decisions that enable roots to stay away from high salt.21,22 Here, we would like to propose this salt-induced tropic growth as a salt-avoidance tropism, which is an important adaptive behavior for plant roots to avoid salt injury and direct them toward their goal of optimal fitness.23 Because salt stress inhibits root elongation, we tested impact of salt-induced negative gravitropism on the root growth. The results showed that inhibitory effect of salt on root growth was largely alleviated with this tropic curve (Fig. 1), further verifying our hypothesis that the salt-induced developmental plasticity is a salt-avoidance behavior (Fig. 2).Open in a separate windowFigure 1Effects of salt on root elongation of Arabidopsis thaliana seedlings from different salt treatments. The inhibitory effect of salt stress on root growth was greatly alleviated in the wild type (Col-0) when root growth of the seedlings was analyzed using a two-layer medium assay (black bars). The MS nutrient medium is on the top, and NaCl concentrations in the media on the bottom are 0, 150 and 250 mM. More severe inhibition of root growth of the seedlings by various levels of NaCl in a root bending assay (white bars) was observed. Data represents means of measurements from >40 individuals from three independent experiments. Bars represent standard error.Open in a separate windowFigure 2An illustrative model of the sensing and response by the plant root when grown under different saline conditions. This model proposes two major mechanisms of salt responses by plants, where salt tolerance is the ability to function while stressed; Salt avoidance is the capacity to stay away from salt stress when growing in changing saline conditions.Another important point that we would like to bring out based on our observation in this work is that salinity also stimulated shoot positive gravitropism or negative phototropism. The observation implicates long-distance communication from root to shoot during plant salt response in the stressed plants. The exact biological function of shoot tropic growth, the signals in this long-distance communication, and underlying molecular mechanism still remains unknown.In conclusion, our study has revealed a novel complex adaptive mechanism that provides plants a capacity for avoiding injury from salt. The hypothesis we have proposed here should provide novel insights into plant stress avoidance. Further analysis using a combinatorial approach, mutant analysis and genomics, is required to decipher the molecular network underlying this salt-avoidance behavior.  相似文献   
12.
Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD), Parkinson's disease (PD) and Huntington's disease (HD) have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP) has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage) will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which genetic disorders play in the development of efficacious interventions and medications is foreseeable.  相似文献   
13.
14.

Background  

Pluripotent stem cells that are capable of differentiating into different cell types and develop robust hallmark cellular features are useful tools for clarifying the impact of developmental events on neurodegenerative diseases such as Huntington's disease. Additionally, a Huntington's cell model that develops robust pathological features of Huntington's disease would be valuable for drug discovery research.  相似文献   
15.

Background  

Chimpanzee dental pulp stem/stromal cells (ChDPSCs) are very similar to human bone marrow derived mesenchymal stem/stromal cells (hBMSCs) as demonstrated by the expression pattern of cell surface markers and their multipotent differentiation capability.  相似文献   
16.

Background

SXT is an integrating conjugative element (ICE) originally isolated from Vibrio cholerae, the bacterial pathogen that causes cholera. It houses multiple antibiotic and heavy metal resistance genes on its ca. 100 kb circular double stranded DNA (dsDNA) genome, and functions as an effective vehicle for the horizontal transfer of resistance genes within susceptible bacterial populations. Here, we characterize the activities of an alkaline exonuclease (S066, SXT-Exo) and single strand annealing protein (S065, SXT-Bet) encoded on the SXT genetic element, which share significant sequence homology with Exo and Bet from bacteriophage lambda, respectively.

Results

SXT-Exo has the ability to degrade both linear dsDNA and single stranded DNA (ssDNA) molecules, but has no detectable endonuclease or nicking activities. Adopting a stable trimeric arrangement in solution, the exonuclease activities of SXT-Exo are optimal at pH 8.2 and essentially require Mn2+ or Mg2+ ions. Similar to lambda-Exo, SXT-Exo hydrolyzes dsDNA with 5'- to 3'-polarity in a highly processive manner, and digests DNA substrates with 5'-phosphorylated termini significantly more effectively than those lacking 5'-phosphate groups. Notably, the dsDNA exonuclease activities of both SXT-Exo and lambda-Exo are stimulated by the addition of lambda-Bet, SXT-Bet or a single strand DNA binding protein encoded on the SXT genetic element (S064, SXT-Ssb). When co-expressed in E. coli cells, SXT-Bet and SXT-Exo mediate homologous recombination between a PCR-generated dsDNA fragment and the chromosome, analogous to RecET and lambda-Bet/Exo.

Conclusions

The activities of the SXT-Exo protein are consistent with it having the ability to resect the ends of linearized dsDNA molecules, forming partially ssDNA substrates for the partnering SXT-Bet single strand annealing protein. As such, SXT-Exo and SXT-Bet may function together to repair or process SXT genetic elements within infected V. cholerae cells, through facilitating homologous DNA recombination events. The results presented here significantly extend our general understanding of the properties and activities of alkaline exonuclease and single strand annealing proteins of viral/bacteriophage origin, and will assist the rational development of bacterial recombineering systems.  相似文献   
17.
The Japanese mouse, Mus musculus molossinus, has long been considered an independent subspecies of the house mouse. A survey of restriction- site haplotypes of mitochondrial DNA (mtDNA) showed that Japanese mice have two main maternal lineages. The most common haplotype is closely related to the mtDNA of the European subspecies M. m. musculus. The other common haplotype and two minor ones are closely related to each other and to the mtDNA of an Asiatic subspecies, M. m. castaneus. Two other rare variants are probably the result of recent contamination by European M. m. domesticus. The musculus type of mtDNA is found in the southern two-thirds of Japan, whereas the common castaneus type is found in the northern third and the minor variants are found sporadically throughout Japan. The castaneus mtDNA lineage had a few minor variants, whereas the musculus lineage was completely monomorphic. By contrast, the native population of M. m. castaneus and the Chinese and Korean musculus populations were highly polymorphic. These results suggest that M. m. molossinus is a hybrid between ancestral colonies, possibly very small, of M. m. musculus and M. m. castaneus, rather than an independent subspecies.   相似文献   
18.
Because our previous studies (Snell, W.J., and W.S. Moore, 1980, J. Cell Biol. 84:203- 210) on the mating reaction of chlamydomonas reinhardtii showed that there was an adhesion-induced turnover of proteins whose synthesis is induced during aggregation. Analysis by SDS PAGE and autoradiography showed that proteins of 220,000 M(r) and 165, 000 M(r) (designated A(1) and A(2) respectively) consistently showed a high rate of synthesis only in flagella or flagellar membrane-enriched fractions prepared from aggregating gametes. Since the two proteins were soluble in the non-ionic detergent NP-40 and were removed from intact cells by a brief pronase treatment, it is likely that A(1) and A(2) are membrane proteins expose on the cell surface. A(1) and A(2) were each synthesized by gametes of both mating types (mt(-) and mt(+)) and synthesis of these two proteins could be detected in the normal mating reaction (wild type mt(-) and mt(+)), in mixtures of mt(-) and impotent mt(+) gametes (which could aggregate but not fuse), and in mixtures of gametes of a single mating type with isolated flagella of the opposite mating type. Cells aggregating in tunicamycin, an inhibitor of protein glycosylation, lost their adhesiveness during aggregation and did not synthesize the 220,000 M(r) protein but instead produced a protein (possibly an underglycosylated form of A(1)) of slightly lower mol wt. The 220,000 and 165,000 M(R) proteins appeared to be flagellar proteins and not cell wall proteins because A(1) and A(2) did not co-migrate with previously identified cell wall proteins, and synthesis of the two proteins could not be detected in flagella-less (bald-2) mutant cells. Analysis of the adhesive activity of sucrose gradient fraction of detergent (octyl glucoside)-solubilized flagellar membranes revealed that fractions containing A(1) and A(2) did not have detectable adhesive activity. The possibility remains that A(1) and A(2) are adhesion molecules whose activity could not be measured in the assay we used. Alternatively, the 220,000 and 165,000 M(r) proteins may be inactivated adhesion molecules or else they may be flagellar surface proteins involved only indirectly in the adhesion process.  相似文献   
19.
The adhesion and locomotion of mouse peripheral lymph node lymphocytes on 2-D protein- coated substrata and in 3-D matrices were compared. Lymphocytes did not adhere to, or migrate on, 2-D substrata suck as serum- or fibronectin-coated glass. They did attach to and migrate in hydrated 3-D collagen lattices. When the collagen was dehydrated to form a 2-D surface, lymphocyte attachment to it was reduced. We propose that lymphocytes, which are poorly adhesive, are able to attach to and migrate in 3-D matrices by a nonadhesive mechanism such as the extension and expansion of pseudopodia through gaps in the matrix, which could provide purchase for movement in the absence of discrete intermolecular adhesions. This was supported by studies using serum-coated micropore filters, since lymphocytes attached to and migrated into filters with pore sizes large enough (3 or 8 mum) to allow pseudopod penetration but did not attach to filters made of an identical material (cellulose esters) but of narrow pore size (0.22 or 0.45 mum). Cinematographic studies of lymphocyte locomotion in collagen gels were also consistent with the above hypothesis, since lymphocytes showed a more variable morphology than is typically seen on plane surfaces, with formation of many small pseudopodia expanded to give a marked constriction between the cell and the pseudopod. These extensions often remained fixed with respect to the environment as the lymphocyte moved away from or past them. This suggests that the pseudopodia were inserted into gaps in the gel matrix and acted as anchorage points for locomotion.  相似文献   
20.

Background

Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations.

Results

We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (RST = 0.96% for 45 autosomal short tandem repeat (STR) markers), reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS) 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu RST = 0.96%, Andhra Pradesh RST = 0.77%) exceeds the estimate of variation between these geographically separated groups (RST = 0.12%). Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data.

Conclusion

Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号