首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   7篇
  99篇
  2021年   1篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   9篇
  2009年   7篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1990年   1篇
  1987年   1篇
  1977年   2篇
  1962年   1篇
  1955年   1篇
  1952年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
21.
We have optimised an indirect immunoperoxidase technique demonstrating bromodeoxyuridine (BrdU) incorporation into dividing cells for cerebellar tissue sections of four-day-old rats injected with this marker. This permits confident identification of granule-cell precursors engaged in DNA synthesis in the external granular layer of the developing cerebellum. Preservation of BrdU immunoreactivity is attained using methanol/acetic acid fixation and different pretreatments before immunostaining, while unlabeled nuclei can be recognized clearly after Feulgen or hematoxylin counterstaining. We established conditions to ensure satisfactory BrdU uptake without affecting cell-cycle progression during the postlabeling time period. The dose of BrdU employed provides saturation S-phase labeling from at least 1 h after BrdU delivery. Various kinetic parameters and phase durations have been determined in experiments involving a single injection or cumulative labeling sequences, and the cycle time was calculated based on two models of generative behavior: steady-state and exponential growth. The working hypothesis of steadystate kinetics can be adopted successfully if the existence of neuroblasts with different proliferation rates is taken into account.  相似文献   
22.
It is widely assumed that mitotic cyclins are rapidly degraded during anaphase, leading to the inactivation of the cell cycle-dependent protein kinase Cdc2 and allowing exit from mitosis. The proteolysis of mitotic cyclins is ubiquitin/26S proteasome mediated and requires the presence of the destruction box motif at the N terminus of the proteins. As a first attempt to study cyclin proteolysis during the plant cell cycle, we investigated the stability of fusion proteins in which the N-terminal domains of an A-type and a B-type tobacco mitotic cyclin were fused in frame with the chloramphenicol acetyltransferase (CAT ) reporter gene and constitutively expressed in transformed tobacco BY2 cells. For both cyclin types, the N-terminal domains led the chimeric cyclin-CAT fusion proteins to oscillate in a cell cycle-specific manner. Mutations within the destruction box abolished cell cycle-specific proteolysis. Although both fusion proteins were degraded after metaphase, cyclin A-CAT proteolysis was turned off during S phase, whereas that of cyclin B-CAT was turned off only during the late G2 phase. Thus, we demonstrated that mitotic cyclins in plants are subjected to post-translational control (e.g., proteolysis). Moreover, we showed that the proteasome inhibitor MG132 blocks BY2 cells during metaphase in a reversible way. During this mitotic arrest, both cyclin-CAT fusion proteins remained stable.  相似文献   
23.
H Xu  MC Heath 《The Plant cell》1998,10(4):585-598
The hypersensitive response (HR) of disease-resistant plant cells to fungal invasion is a rapid cell death that has some features in common with programmed cell death (apoptosis) in animals. We investigated the role of cytosolic free calcium ([Ca2+]i) in the HR of cowpea to the cowpea rust fungus. By using confocal laser scanning microscopy in conjunction with a calcium reporter dye, we found a slow, prolonged elevation of [Ca2+]i in epidermal cells of resistant but not susceptible plants as the fungus grew through the cell wall. [Ca2+]i levels declined to normal levels as the fungus entered and grew within the cell lumen. This elevation was related to the stage of fungal growth and not to the speed of initiation of subsequent cell death. Elevated [Ca2+]i levels also represent the first sign of the HR detectable in this cowpea-cowpea rust fungus system. The increase in [Ca2+]i was prevented by calcium channnel inhibitors. This effect was consistent with pharmacological tests in which these inhibitors delayed the HR. The data suggest that elevation of [Ca2+]i is involved in signal transduction leading to the HR during rust fungal infection.  相似文献   
24.
Leptin is an adipokine that acts in the central nervous system and regulates energy balance. Animal models and human observational studies have suggested that leptin surge in the perinatal period has a critical role in programming long-term risk of obesity. In utero exposure to maternal hyperglycemia has been associated with increased risk of obesity later in life. Epigenetic mechanisms are suspected to be involved in fetal programming of long term metabolic diseases. We investigated whether DNA methylation levels near LEP locus mediate the relation between maternal glycemia and neonatal leptin levels using the 2-step epigenetic Mendelian randomization approach. We used data and samples from up to 485 mother-child dyads from Gen3G, a large prospective population-based cohort. First, we built a genetic risk score to capture maternal glycemia based on 10 known glycemic genetic variants (GRS10) and showed it was an adequate instrumental variable (β = 0.046 mmol/L of maternal fasting glucose per additional risk allele; SE = 0.007; P = 7.8 × 10−11; N = 467). A higher GRS10 was associated with lower methylation levels at cg12083122 located near LEP (β = −0.072 unit per additional risk allele; SE = 0.04; P = 0.05; N = 166). Direction and effect size of association between the instrumental variable GRS10 and methylation at cg12083122 were consistent with the negative association we observed using measured maternal glycemia. Lower DNA methylation levels at cg12083122 were associated with higher cord blood leptin levels (β = −0.17 log of cord blood leptin per unit; SE = 0.07; P = 0.01; N = 170). Our study supports that maternal glycemia is part of causal pathways influencing offspring leptin epigenetic regulation.  相似文献   
25.
A method is described for the development of DNA markers for detection of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in predator gut analysis, based on sequence characterized amplified regions (SCARs) derived from a randomly amplified polymorphic DNA (RAPD) band. A 1200-bp DNA fragment of H. armigera, absent in the predator band pattern and in other closely related prey species, was identified by RAPD analysis. This fragment was cloned and its extremes sequenced to design extended strand-specific 20-mer oligonucleotide primers. Three pairs of SCAR primers, which amplified three different DNA fragments, were used to study the effect of fragment length on detection of prey in the predator gut. Using the pair of primers that amplified the longest fragment of H. armigera DNA, a single band of 1100 bp was obtained, but its detection was not possible in the predator gut. Detection of the ingested prey was possible with the other two pairs of SCAR primers, obtaining bands of 600 and 254 bp, respectively. Detection of H. armigera DNA in the gut of the predator Dicyphus tamaninii was evaluated immediately after ingestion (t = 0) and after 4 h. Detection of H. armigera DNA after 4 h was only possible using the pair of primers that amplified the shortest fragment (254 bp). The test for specificity, using these last pair of primers, showed that H. armigera was the only species detected. The detection threshold was defined at a 1:8192 dilution of a H. armigera whole egg in all samples.  相似文献   
26.

Introduction  

Interleukin (IL)-23 is essential for the development of various experimental autoimmune models. However, the role of IL-23 in non-autoimmune experimental arthritis remains unclear. Here, we examined the role of IL-23 in the non-autoimmune antigen-induced arthritis (AIA) model. In addition, the regulatory potential of IL-23 in IL-17A and retinoic acid-related orphan receptor gamma t (RORγt) expression in CD4+ and TCRγδ+ T cells was evaluated systemically as well as at the site of inflammation.  相似文献   
27.
28.
29.
GSH appears to be essential for proper development of the root nodules during the symbiotic association of legume-rhizobia in which the entry of rhizobia involves the formation of infection threads. In the particular case of peanut-rhizobia symbiosis, the entry of rhizobia occurs by the mechanism of infection called 'crack entry', i.e. entry at the point of emergence of lateral roots. We have previously shown the role of GSH content of Bradyrhizobium sp. SEMIA 6144 during the symbiotic association with peanut using a GSH-deficient mutant obtained by disruption of the gshA gene, encoding gamma-glutamylcysteine synthetase (gamma-GCS), which was able to induce nodules in peanut roots without alterations in the symbiotic phenotype. To investigate the role of the peanut GSH content in the symbiosis, the compound L-buthionine-sulfoximine (BSO), a specific inhibitor of gamma-GCS in plants, was used. There were no differences in the plant growth and the typical anatomic structure of the peanut roots when the plants grew in the Fahraeus medium either in presence or in absence of 0.1 mM BSO. However, the GSH content was reduced by 51% after treatment with BSO. The BSO-treated plants inoculated with wild-type or mutant strains of Bradyrhizobium sp. showed a significant reduction in the number and dry weight of nodules, suggesting that GSH content could play an important role in the nodulation process of root peanut with Bradyrhizobium sp.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号