全文获取类型
收费全文 | 114篇 |
免费 | 12篇 |
专业分类
126篇 |
出版年
2021年 | 2篇 |
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 4篇 |
2014年 | 3篇 |
2013年 | 2篇 |
2012年 | 2篇 |
2011年 | 4篇 |
2010年 | 5篇 |
2009年 | 1篇 |
2008年 | 1篇 |
2007年 | 3篇 |
2006年 | 4篇 |
2005年 | 4篇 |
2004年 | 2篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 6篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1994年 | 1篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 5篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1984年 | 3篇 |
1983年 | 9篇 |
1982年 | 6篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 4篇 |
1973年 | 3篇 |
1972年 | 3篇 |
1970年 | 2篇 |
1969年 | 1篇 |
1967年 | 1篇 |
1966年 | 3篇 |
1965年 | 1篇 |
排序方式: 共有126条查询结果,搜索用时 15 毫秒
91.
92.
93.
94.
Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae 下载免费PDF全文
Nonhomologous end joining (NHEJ) is an important DNA double-strand-break (DSB) repair pathway that requires three protein complexes in Saccharomyces cerevisiae: the Ku heterodimer (Yku70-Yku80), MRX (Mre11-Rad50-Xrs2), and DNA ligase IV (Dnl4-Lif1), as well as the ligase-associated protein Nej1. Here we use chromatin immunoprecipitation from yeast to dissect the recruitment and release of these protein complexes at HO-endonuclease-induced DSBs undergoing productive NHEJ. Results revealed that Ku and MRX assembled at a DSB independently and rapidly after DSB formation. Ligase IV appeared at the DSB later than Ku and MRX and in a strongly Ku-dependent manner. Ligase binding was extensive but slightly delayed in rad50 yeast. Ligase IV binding occurred independently of Nej1, but instead promoted loading of Nej1. Interestingly, dissociation of Ku and ligase from unrepaired DSBs depended on the presence of an intact MRX complex and ATP binding by Rad50, suggesting a possible role of MRX in terminating a NHEJ repair phase. This activity correlated with extended DSB resection, but limited degradation of DSB ends occurred even in MRX mutants with persistently bound Ku. These findings reveal the in vivo assembly of the NHEJ repair complex and shed light on the mechanisms controlling DSB repair pathway utilization. 相似文献
95.
Gray DW Breneman SR Topper LA Sharkey TD 《The Journal of biological chemistry》2011,286(23):20582-20590
2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ~90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K(+), whereas isoprene production is inhibited by K(+) such that, at physiologically relevant [K(+)], little or no isoprene emission should be detected from MBO-emitting trees. The K(m) of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site. 相似文献
96.
97.
Y.J. Topper T. Oka B.K. Vonderhaar M. Wilchek 《Biochemical and biophysical research communications》1975,66(2):793-798
Complexes between insulin, prolactin or placental lactogen and cyanogen bromide-activated Sepharose release hormone-like materials when treated with bovine serum albumin (BSA) (1). These materials have enhanced biological activities, and are, presumably, N1N2-disubstituted guanidines in which the hormones and BSA are the substituents. The present studies show that ammonium bicarbonate can substitute for BSA in the generation of the super-active hormones. Super-activity of the released, guanidinated hormones, therefore, can be manifested in the absence of the BSA substituent. The key derivatized amino acid residues have not yet been identified, but it appears that guanidination of lysine is either unnecessary or insufficient. Several operational considerations which are important for the demonstration of these enhanced activities are discussed. 相似文献
98.
99.
100.
Progesterone prevents lactation during pregnancy. This anti-lactogenic effect includes suppression of the advent of alpha-lactalbumin activity, an effect which prevents the formation of lactose. Alpha lactalbumin activity can be induced to some extent in pregnant rat mammary explants by insulin and hydrocortisone alone, and to a greater extent with prolactin in addition, or with EGF in addition. Physiological levels of progesterone markedly inhibit the induction in the presence of prolactin plus insulin and hydrocortisone, only weakly inhibit in the presence of insulin and hydrocortisone alone, and have no inhibitory effect in the presence of EGF plus insulin and hydrocortisone. Prolactin permits some inhibition in the presence of EGF. The results suggest that progesterone does not subvert the essential insulin or glucocorticoid signals. It also appears that transduction of the prolactin signal is required in order that progesterone effectively block induction of alpha-lactalbumin activity. 相似文献