首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   16篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   7篇
  2015年   7篇
  2014年   13篇
  2013年   18篇
  2012年   24篇
  2011年   9篇
  2010年   9篇
  2009年   7篇
  2008年   11篇
  2007年   11篇
  2006年   5篇
  2005年   11篇
  2004年   15篇
  2003年   10篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1987年   4篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有209条查询结果,搜索用时 296 毫秒
171.
In this paper, a peptic ulcer is considered from the perspective that it is representative of a heterogeneous group of multifactorial determined or influenced disorders having a common pathomorphologic expression. This heterogeneity involves several pathophysiological attributes, including both functional (including secretory and motility events and their respective driving mechanisms) and morphologic alterations that relate to mucosal resistance. Patients with duodenal ulcer (DU) have been observed to exhibit alterations, in comparison to normal subjects, in the circadian rhythm characteristics of several gastrointestinal functions. Prominent among these are altered amplitudes of several circadian-organized gastric variables, such as intragastric pH, gastrin, pepsinogen and gastric mitotic index. With respect to any given variable, a reduced group amplitude (a measure of one-half the peak-trough difference of a 24-hr rhythm) could signify an increased dispersion of acrophases (the location of the peak of a circadian rhythm along the 24-hr time scale) reflecting interindividual variation in synchronization schedules, sleep-wake patterns, or chronobiologic alterations. A reduced interindividual amplitude further supports the concept of the heterogeneity of peptic disease. A decrease in the intraindividual amplitude of certain gastric rhythms implies an altered temporal pattern over the 24 hr. This is consistent with the hypothesis of a decrease in the amount of time available for recovery of a given function or set of integrated functions, and hence, increased susceptibility to mucosal injury. Normal high-amplitude variation in gastrointestinal functioning over the 24 hr appears to be required for natural restoration of the gut.  相似文献   
172.
173.
174.
175.
In this chapter we describe in details the permeabilized cell and skinned fiber techniques and their applications for studies of mitochondrial function in vivo. The experience of more than 10 years of research in four countries is summarized. The use of saponin in very low concentration (50-100 g/ml) for permeabilisation of the sarcolemma leaves all intracellular structures, including mitochondria, completely intact. The intactness of mitochondrial function in these skinned muscle fibers is demonstrated in this work by multiple methods, such as NADH and flavoprotein fluorescence studies, fluorescence imaging, confocal immunofluorescence microscopy and respiratory analysis. Permeabilized cell and skinned fiber techniques have several very significant advantages for studies of mitochondrial function, in comparison with the traditional methods of use of isolated mitochondria: (1) very small tissue samples are required; (2) all cellular population of mitochondria can be investigated; (3) most important, however, is that mitochondria are studied in their natural surrounding. The results of research by using this method show the existence of several new phenomenon - tissue dependence of the mechanism of regulation of mitochondrial respiration, and activation of respiration by selective proteolysis. These phenomena are explained by interaction of mitochondria with other cellular structures in vivo. The details of experimental studies with use of these techniques and problems of kinetic analysis of the results are discussed. Examples of large-scale clinical application of these methods are given.  相似文献   
176.
177.
Different levels of sexual size dimorphism (SSD) have usually been explained by selective forces operating in the adult stage. Developmental mechanisms leading to SSD during the juvenile development have received less attention. In particular, it is often not clear if the individuals of the ultimately larger sex are larger already at hatching/birth, do they grow faster, or do they grow for a longer time. In the case of insects, the question about sexually dimorphic growth rates is still open because most previous studies fail to adequately consider the complexity of larval growth curve, the existence of distinct larval instars in particular. Applying an instar-specific approach, we analysed ontogenetic determination of female-biased SSD in a number of distantly related species of Lepidoptera. The species studied showed a remarkable degree of similarity: SSD appeared invariably earlier than in the final instar, and tended to accumulate during development. The higher weight of the females was shown to be primarily a consequence of longer development within several larval instars. There was some evidence of higher instantaneous growth rates of females in the penultimate instar but not in the final instar. Egg size, studied in one species, was found not to be sexually dimorphic. The high across-species similarity may be seen as an indication of constraints on the set of possible mechanisms of size divergence between the two sexes. The results are discussed from the perspective of the evolution of insect body size in general. In particular, this study confirms the idea about limited evolvability of within-instar growth increments. An evolutionary change towards larger adult size appears always to be realised via moderate changes in relative increments of several larval instars, whereas a considerable change in just one instar may not be feasible.  相似文献   
178.
Within a season, successive generations of short-lived organisms experience different combinations of environmental parameters, such as temperature, food quality and mortality risk. Adult body size of e.g. insects is therefore expected to vary both as a consequence of proximate environmental effects as well as adaptive responses to seasonal cues. In this study, we examined intraspecific differences in body size between successive generations in 12 temperate bivoltine moths (Lepidoptera), with the ultimate goal to critically compare the role of proximate and adaptive mechanisms in determining seasonal size differences. In nearly all species, individuals developing late in the season (diapausing generation) attained a larger adult size than their conspecifics with the larval period early in the season (directly developing generation) despite the typically lower food quality in late summer. Rearing experiments conducted on one of the studied species, Selenia tetralunaria also largely exclude the possibility that the proximate effects of food quality and temperature are decisive in determining size differences between successive generations. Adaptive explanations appear likely instead: the larger body size in the diapausing generation may be adaptively associated with the lower bird predation pressure late in the season, and/or the likely advantage of large pupal size during overwintering.  相似文献   
179.
A comparison of 8 cyanobacterial genomes reveals that there are 181 shared genes that do not have obvious orthologs in other bacteria. These signature genes define aspects of the genotype that are uniquely cyanobacterial. Approximately 25% of these genes have been associated with some function. These signature genes may or may not be involved in photosynthesis but likely they will be in many cases. In addition, several examples of widely conserved gene order involving two or more signature genes were observed. This suggests there may be regulatory processes that have been preserved throughout the long history of the cyanobacterial phenotype. The results presented here will be especially useful because they identify which of the many genes of unassigned function are likely to be of the greatest interest. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号