首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   599篇
  免费   84篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   8篇
  2018年   13篇
  2017年   2篇
  2016年   16篇
  2015年   21篇
  2014年   36篇
  2013年   38篇
  2012年   48篇
  2011年   37篇
  2010年   24篇
  2009年   20篇
  2008年   29篇
  2007年   34篇
  2006年   11篇
  2005年   27篇
  2004年   37篇
  2003年   24篇
  2002年   28篇
  2001年   18篇
  2000年   25篇
  1999年   20篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   10篇
  1993年   4篇
  1992年   8篇
  1991年   6篇
  1990年   11篇
  1989年   5篇
  1988年   12篇
  1987年   4篇
  1986年   5篇
  1985年   9篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1976年   3篇
  1974年   2篇
  1973年   4篇
  1971年   2篇
  1970年   4篇
  1969年   5篇
  1968年   5篇
排序方式: 共有683条查询结果,搜索用时 15 毫秒
681.
Patterns of variability in quantitative traits across environmental gradients have received relatively little attention in evolutionary ecology. A recent meta-analysis showed that relative phenotypic variability in body size tends to decrease with improving environmental conditions. This pattern was explained by introducing the concept of upper threshold size to a general optimality model of individual growth but alternative explanations certainly exist. In particular, it is frequently observed in insects that variability in individual growth rates decreases with improving environmental conditions. Here we explore the effect of this phenomenon on environment-specific variability in adult sizes. A quantitative model shows that relative variability in adult sizes is independent of environmental quality if absolute variability in growth rates remains constant across the gradient of environmental quality. Deviations from this borderline case are definitely realistic in both directions. Both negative and positive relationships between relative variability of body size and environmental quality can thus be predicted to arise as a consequence of environment-specific variability in growth rates. The variability itself can be both genetic or environmental in its nature. We present empirical data which support both the assumptions and conclusions of our model-based analysis, as well as emphasize the advantages of controlled experiments for understanding the proximate sources of phenotypic variance.  相似文献   
682.
683.
To assess the role of glycogenolysis in mediating exercise-induced increases in muscle water as monitored by changes in muscle proton relaxation times on magnetic resonance imaging (MRI) and cross-sectional area (CSA), five patients with myophosphorylase deficiency (MPD) were compared with seven controls. Absolute and relative work loads were matched during ischemic handgrip and graded cycling, respectively. Relaxation times of active muscle did not increase after handgrip in MPD (T1: 1 +/- 14%, P greater than 0.1; T2: 4 +/- 4%, P greater than 0.1) but did in controls (T1: 59 +/- 30%, P less than 0.005; T2: 26 +/- 9%, P less than 0.005). The volume of exercised muscles, estimated by CSA, increased in both groups after handgrip (controls: 13.8 +/- 3.5%, n = 7, P less than 0.0001; MPD: 7.5 +/- 1.5%, n = 4, P less than 0.005), but the change was greater in controls (P less than 0.02). Ischemic handgrip in controls resulted in a large increase in finger flexor signal intensity (SI) on short tau-inversion recovery images (25 +/- 7%, n = 3; P less than 0.005 compared with preexercise) and a further increase with subsequent reflow (43 +/- 11%, n = 3; P less than 0.001 compared with rest); in MPD, SI did not increase. The ratio of active to inactive muscle SI did not increase from rest to maximal cycle exercise in MPD (0 +/- 20%, n = 2, P greater than 0.1) but did in normals (73 +/- 36%, n = 3; P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号