首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   13篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   10篇
  2017年   4篇
  2016年   5篇
  2015年   11篇
  2014年   16篇
  2013年   15篇
  2012年   18篇
  2011年   25篇
  2010年   13篇
  2009年   4篇
  2008年   8篇
  2007年   12篇
  2006年   7篇
  2005年   11篇
  2004年   20篇
  2003年   9篇
  2002年   11篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1988年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
21.
22.
23.
In this review we examine the effects of the allosteric activator, acetyl CoA on both the structure and catalytic activities of pyruvate carboxylase. We describe how the binding of acetyl CoA produces gross changes to the quaternary and tertiary structures of the enzyme that are visible in the electron microscope. These changes serve to stabilize the tetrameric structure of the enzyme. The main locus of activation of the enzyme by acetyl CoA is the biotin carboxylation domain of the enzyme where ATP-cleavage and carboxylation of the biotin prosthetic group occur. As well as enhancing reaction rates, acetyl CoA also enhances the binding of some substrates, especially HCO3-, and there is also a complex interaction with the binding of the cofactor Mg2. The activation of pyruvate carboxylase by acetyl CoA is generally a cooperative processes, although there is a large degree of variability in the degree of cooperativity exhibited by the enzyme from different organisms. The X-ray crystallographic holoenzyme structures of pyruvate carboxylases from Rhizobium etli and Staphylococcus aureus have shown the allosteric acetyl CoA binding domain to be located at the interfaces of the biotin carboxylation and carboxyl transfer and the carboxyl transfer and biotin carboxyl carrier protein domains.  相似文献   
24.
Nitrous oxide (N(2)O), the third most abundant greenhouse gas (GHG), is highly stable and plays a significant role in stratospheric ozone destruction. The primary anthropogenic source of N(2)O stems from use of nitrogen fertilizers in soil. The bacterial enzyme nitrous oxide reductase (N(2)OR), naturally found in some soils, is the only known enzyme capable of catalyzing the final step of the denitrification pathway, conversion of N(2)O to N(2). In this opinion, we discuss potential biology-based strategies to reduce N(2)O by amplifying the amount of available enzyme catalyst in agri-system environments during crop growth and in post-harvest detritus. N(2)OR from Pseudomonas stutzeri has been tested in transgenic plants with promising results. Such seed-borne phytoremediation systems targeted towards GHGs merit field testing.  相似文献   
25.
Cross-reactive dengue virus (DENV) antibodies directed against the envelope (E) and precursor membrane (prM) proteins are believed to contribute to the development of severe dengue disease by facilitating antibody-dependent enhancement of infection. We and others recently demonstrated that anti-prM antibodies render essentially non-infectious immature DENV infectious in Fcγ-receptor-expressing cells. Immature DENV particles are abundantly present in standard (st) virus preparations due to inefficient processing of prM to M during virus maturation. Structural analysis has revealed that the E protein is exposed in immature particles and this prompted us to investigate whether antibodies to E render immature particles infectious. To this end, we analyzed the enhancing properties of 27 anti-E antibodies directed against distinct structural domains. Of these, 23 bound to immature particles, and 15 enhanced infectivity of immature DENV in a furin-dependent manner. The significance of these findings was subsequently tested in vivo using the well-established West Nile virus (WNV) mouse model. Remarkably, mice injected with immature WNV opsonized with anti-E mAbs or immune serum produced a lethal infection in a dose-dependent manner, whereas in the absence of antibody immature WNV virions caused no morbidity or mortality. Furthermore, enhancement infection studies with standard (st) DENV preparations opsonized with anti-E mAbs in the presence or absence of furin inhibitor revealed that prM-containing particles present within st virus preparations contribute to antibody-dependent enhancement of infection. Taken together, our results support the notion that antibodies against the structural proteins prM and E both can promote pathogenesis by enhancing infectivity of prM-containing immature and partially mature flavivirus particles.  相似文献   
26.

Background

Canagliflozin is a sodium glucose co-transporter (SGLT) 2 inhibitor in clinical development for the treatment of type 2 diabetes mellitus (T2DM).

Methods

14C-alpha-methylglucoside uptake in Chinese hamster ovary-K cells expressing human, rat, or mouse SGLT2 or SGLT1; 3H-2-deoxy-d-glucose uptake in L6 myoblasts; and 2-electrode voltage clamp recording of oocytes expressing human SGLT3 were analyzed. Graded glucose infusions were performed to determine rate of urinary glucose excretion (UGE) at different blood glucose (BG) concentrations and the renal threshold for glucose excretion (RTG) in vehicle or canagliflozin-treated Zucker diabetic fatty (ZDF) rats. This study aimed to characterize the pharmacodynamic effects of canagliflozin in vitro and in preclinical models of T2DM and obesity.

Results

Treatment with canagliflozin 1 mg/kg lowered RTG from 415±12 mg/dl to 94±10 mg/dl in ZDF rats while maintaining a threshold relationship between BG and UGE with virtually no UGE observed when BG was below RTG. Canagliflozin dose-dependently decreased BG concentrations in db/db mice treated acutely. In ZDF rats treated for 4 weeks, canagliflozin decreased glycated hemoglobin (HbA1c) and improved measures of insulin secretion. In obese animal models, canagliflozin increased UGE and decreased BG, body weight gain, epididymal fat, liver weight, and the respiratory exchange ratio.

Conclusions

Canagliflozin lowered RTG and increased UGE, improved glycemic control and beta-cell function in rodent models of T2DM, and reduced body weight gain in rodent models of obesity.  相似文献   
27.
Lipid peroxidation of docosahexaenoic (22:6; n-3) acid (DHA) is elevated in the CNS in patients with Alzheimer's disease and in animal models of seizure and ethanol withdrawal. One product of DHA oxidation is trans -4-hydroxy-2-hexenal (HHE), a six carbon analog of the n-6 fatty acid derived trans -4-hydroxy-2-nonenal (HNE). In this work, we studied the neurotoxic potential of HHE. HHE and HNE were toxic to primary cultures of cerebral cortical neurons with LD50's of 23 and 18 μmol/L, respectively. Toxicity was prevented by the addition of thiol scavengers. HHE and HNE depleted neuronal GSH content identically with depletion observed with 10 μmol/L of either compound. Using an antibody raised against HHE–protein adducts, we show that HHE modified specific proteins of 75, 50, and 45 kDa in concentration- and time-dependent manners. The time-dependent formation of HHE differed from that of F4-neuroprostanes following in vitro DHA oxidation likely as a result of the different oxidation pathways involved. Using purified mitochondrial aldehyde dehydrogenase ALDH5A, we found that HHE was oxidized 6.5-fold less efficiently than HNE. Our data demonstrate that HHE and HNE have similarities but also differences in their neurotoxic mechanisms and metabolism.  相似文献   
28.
The selective oxidation of aryl substrates to chiral cis-1,2-dihydrodiols is an industrially important reaction for the production of intermediates that can be used to produce fine chemicals, pharmaceuticals, and many other bioactive natural products. More specifically, the oxidation of naphthalene to produce optically pure (+)-cis-(1R,2S)-1,2-napthalene dihydrodiol (NDHD) to be used as a chiral synthon for specialty chemicals has gained much interest. Escherichia coli JM109(DE3) pDTG141 expresses naphthalene dioxygenase which catalyzes this reaction. Poor substrate solubility and substrate toxicity are barriers to using the power of these enzymes in large-scale aqueous whole cell systems. A biphasic reaction system was chosen to overcome these barriers. The optimal biphasic conditions for E. coli JM109(DE3) pDTG141 were determined to be 20% dodecane as the organic solvent containing 40 g/L naphthalene. The productivity of the biotransformation using resting cells was 1.75 g-diol/g-cdw/h for the first 6 h with 20% organic phase, which was increased from 0.59 g-diol/g-cdw/h for growing cells with 40% organic phase. The biocatalytic activity was retained for at least 12 h. The biocatalyst could be recycled for at least four runs in both suspended and immobilized form. The stability of the 12 h recycle was improved by immobilization in calcium alginate beads. The process has been improved both environmentally and economically by reducing the amount of solvent used and by recycling the biocatalyst.  相似文献   
29.
The effectiveness of thermoseparating polymer-based aqueous two-phase systems (ATPS) in the enzymatic hydrolysis of starch was investigated. In this work, the phase diagrams of PEO-PPO-2500/ammonium sulfate and PEO-PPO-2500/magnesium sulfate systems were determined at 25 degrees C. The partition behavior of pure alpha-amylase and amyloglucosidase in four ATPS, namely, PEO-PPO/(NH(4))(2)SO(4), PEO-PPO/MgSO(4), polyethylene glycol (PEG)/(NH(4))(2)SO(4), and PEG/MgSO(4), was evaluated. The effects of phase-forming component concentrations on the enzyme activity and partitioning were assessed. Partitioning of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii was also investigated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. The PEO-PPO-2500/MgSO(4) system was extremely attractive for starch hydrolysis. Polymer-based starch hydrolysis experiments containing PEO-PPO-2500/MgSO(4) indicated that the use of ATPS had a significant effect on soluble starch hydrolysis. Batch starch hydrolysis experiments with PEO-PPO/salt two-phase systems resulted in higher production of maltose or glucose and exhibited remarkably faster hydrolysis. A 22% gain in maltose yield was obtained as a result of the increased productivity. This work is the first reported application of thermoseparating polymer ATPS in the processing of starches. These results reveal the potential for thermoseparating polymer-enhanced extractive bioconversion of starch as a practical technology.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号