首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2654篇
  免费   218篇
  国内免费   4篇
  2876篇
  2023年   13篇
  2022年   27篇
  2021年   53篇
  2020年   33篇
  2019年   32篇
  2018年   38篇
  2017年   34篇
  2016年   57篇
  2015年   112篇
  2014年   142篇
  2013年   143篇
  2012年   214篇
  2011年   208篇
  2010年   121篇
  2009年   123篇
  2008年   181篇
  2007年   169篇
  2006年   156篇
  2005年   173篇
  2004年   140篇
  2003年   143篇
  2002年   149篇
  2001年   20篇
  2000年   18篇
  1999年   28篇
  1998年   45篇
  1997年   22篇
  1996年   16篇
  1995年   19篇
  1994年   24篇
  1993年   19篇
  1992年   17篇
  1991年   14篇
  1990年   12篇
  1989年   16篇
  1988年   30篇
  1987年   11篇
  1986年   10篇
  1985年   9篇
  1984年   14篇
  1983年   7篇
  1982年   9篇
  1981年   11篇
  1980年   3篇
  1979年   9篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1974年   4篇
  1973年   6篇
排序方式: 共有2876条查询结果,搜索用时 19 毫秒
31.
32.
ERCC1 (excision repair cross-complementation group 1) plays essential roles in the removal of DNA intrastrand crosslinks by nucleotide excision repair, and that of DNA interstrand crosslinks by the Fanconi anemia (FA) pathway and homology-directed repair processes (HDR). The function of ERCC1 thus impacts on the DNA damage response (DDR), particularly in anticancer therapy when DNA damaging agents are employed. ERCC1 expression has been proposed as a predictive biomarker of the response to platinum-based therapy. However, the assessment of ERCC1 expression in clinical samples is complicated by the existence of 4 functionally distinct protein isoforms, which differently impact on DDR. Here, we explored the functional competence of each ERCC1 protein isoform and obtained evidence that the 202 isoform is the sole one endowed with ERCC1 activity in DNA repair pathways. The ERCC1 isoform 202 interacts with RPA, XPA, and XPF, and XPF stability requires expression of the ERCC1 202 isoform (but none of the 3 others). ERCC1-deficient non-small cell lung cancer cells show abnormal mitosis, a phenotype reminiscent of the FA phenotype that can be rescued by isoform 202 only. Finally, we could not observe any dominant-negative interaction between ERCC1 isoforms. These data suggest that the selective assessment of the ERCC1 isoform 202 in clinical samples should accurately reflect the DDR-related activity of the gene and hence constitute a useful biomarker for customizing anticancer therapies.  相似文献   
33.
PTMs are the ultimate elements that perfect the existence and the activity of proteins. Owing to PTM, not less than 500 millions biological activities arise from approximately 20 000 protein‐coding genes in human. Hundreds of PTM were characterized in living beings among which is a large variety of glycosylations. Many compounds have been developed to tentatively block each kind of glycosylation so as to study their biological functions but due to their complexity, many off‐target effects were reported. Insulin resistance exemplifies this problem. Several independent groups described that inhibiting the removal of O‐GlcNAc moieties using O‐(2‐acetamido‐2‐deoxy‐d‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), a nonselective inhibitor of the nuclear and cytoplasmic O‐GlcNAcase, induced insulin resistance both in vivo and ex vivo. The development of potent and highly selective O‐GlcNAcase inhibitors called into question that elevated O‐GlcNAcylation levels are responsible for insulin resistance; these compounds not recapitulating the insulin‐desensitizing effect of PUGNAc. To tackle this intriguing problem, a South Korean group recently combined ATP‐affinity chromatography and gel‐assisted digestion to identify proteins, differentially expressed upon treatment of 3T3‐L1 adipocytes with PUGNAc, involved in protein turnover and insulin signaling.  相似文献   
34.
Highlights? Two-way modulations of adipose VEGF were generated with aP2-Cre transgene ? Adipose VEGF KO reduces vasculature, increases hypoxia and inflammation in fat ? Adipose VEGF KO accelerates the development of metabolic disease in high-fat diet ? Induced adipose VEGF has opposite effect on fat and restores metabolic homeostasis  相似文献   
35.
X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored.  相似文献   
36.
Metabolomics, including lipidomics, is emerging as a quantitative biology approach for the assessment of energy flow through metabolism and information flow through metabolic signaling; thus, providing novel insights into metabolism and its regulation, in health, healthy ageing and disease. In this forward-looking review we provide an overview on the origins of metabolomics, on its role in this postgenomic era of biochemistry and its application to investigate metabolite role and (bio)activity, from model systems to human population studies. We present the challenges inherent to this analytical science, and approaches and modes of analysis that are used to resolve, characterize and measure the infinite chemical diversity contained in the metabolome (including lipidome) of complex biological matrices. In the current outbreak of metabolic diseases such as cardiometabolic disorders, cancer and neurodegenerative diseases, metabolomics appears to be ideally situated for the investigation of disease pathophysiology from a metabolite perspective.  相似文献   
37.

Aims

A commonly accepted challenge when visualising plant roots in X-ray micro Computed Tomography (μCT) images is the similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a recognised, yet currently uncharacterised source of segmentation error. This work sought to quantify the effect of soil moisture content on the ability to segment roots from soil in μCT images.

Methods

Rice (Oryza sativa) plants grown in contrasting soils (loamy sand and clay loam) were μCT scanned daily for nine days whilst drying from saturation. Root volumes were segmented from μCT images and compared with volumes derived by root washing.

Results

At saturation the overlapping attenuation values of root material, water-filled soil pores and soil organic matter significantly hindered segmentation. However, in dry soil (ca. six days of drying post-saturation) the air-filled pores increased image noise adjacent to roots and impeded accurate visualisation of root material. The root volume was most accurately segmented at field capacity.

Conclusions

Root volumes can be accurately segmented from μCT images of undisturbed soil without compromising the growth requirements of the plant providing soil moisture content is kept at field capacity. We propose all future studies in this area should consider the error associated with scanning at different soil moisture contents.  相似文献   
38.
39.
The oriental melon (Cucumis melo L. var. makuwa cv. ‘Silver Light’) is an important fruit crop in the tropical and subtropical regions. However, oriental melon production is severely decreased by fungal diseases. In this study, antifungal protein (AFP) and chitinase (CHI) fusion genes were introduced into oriental melons to control fungal diseases caused by Rhizoctonia solani and Fusarium oxysporum. Transformation of oriental melon (Cucumis melo L. var. makuwa cv. ‘Silver Light’) with Agrobacterium tumefaciens strain LBA4404 containing antifungal protein (AFP) and chitinase (CHI) fusion genes under the control of the cauliflower mosaic virus (CaMV) 35S promoter and neomycin phosphotransferase (nptII) gene as a selectable marker was performed. Cotyledon explants of oriental melon were inoculated by Agrobacterium suspensions with pBI121–AFPCHI and cultured in a regeneration medium. After regeneration, genomic DNA polymerase chain reaction (PCR) was conducted to confirm the presence of putative transgenic shoots. Southern blot analysis confirmed that the AFPCHI fusion gene was incorporated into the genomic DNA of the PCR-positive lines. RT-PCR analysis showed that the AFPCHI fusion gene was expressed in the individual transgenic lines. Western blot analysis revealed the accumulation of CHI protein in leaves. A segregation analysis of the T1 generation confirmed the inheritance of the transgene. Our results demonstrated that the AFPCHI fusion gene was effective in protecting the transgenic melon plants against fungal disease caused by Rhizoctonia solani and Fusarium oxysporum.  相似文献   
40.
Capsule Leach’s Storm‐petrels Oceanodroma leucorhoa may be depredated by endemic St Kilda Field Mice Apodemus sylvaticus hirtensis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号